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Abstract

This research focuses on �nding a large number of eigenvalues and eigenvectors of a sparse symmetric

or Hermitian matrix, for example, �nding 1000 eigenpairs of a 100,000 � 100,000 matrix. These eigenvalue

problems are challenging because the matrix size is too large for traditional QR based algorithms and the

number of desired eigenpairs is too large for most common sparse eigenvalue algorithms. In this thesis,

we approach this problem in two steps. First, we identify a sound preconditioned eigenvalue procedure

for computing multiple eigenpairs. Second, we improve the basic algorithm through new preconditioning

schemes and spectrum transformations.

Through careful analysis, we see that both the Arnoldi and Davidson methods have an appropriate

structure for computing a large number of eigenpairs with preconditioning. We also study three variations

of these two basic algorithms. Without preconditioning, these methods are mathematically equivalent but

they di�er in numerical stability and complexity. However, the Davidson method is much more successful

when preconditioned. Despite its success, the preconditioning scheme in the Davidson method is seen as

awed because the preconditioner becomes ill-conditioned near convergence. After comparison with other

methods, we �nd that the e�ectiveness of the Davidson method is due to its preconditioning step being

an inexact Newton method. We proceed to explore other Newton methods for eigenvalue problems to

develop preconditioning schemes without the same aws. We found that the simplest and most e�ective

preconditioner is to use the Conjugate Gradient method to approximately solve equations generated by the

Newton methods. Also, a di�erent strategy of enhancing the performance of the Davidson method is to

alternate between the regular Davidson iteration and a polynomial method for eigenvalue problems. To use

these polynomials, the user must decide which intervals of the spectrum the polynomial should suppress. We

studied di�erent schemes of selecting these intervals, and found that these hybrid methods with polynomials

can be e�ective as well. Overall, the Davidson method with the CG preconditioner was the most successful

method the eigenvalue problems we tested.



Chapter 1

Electronic Structure Simulation

Before entering into the main topic of this thesis, we use this chapter to introduces the context of our

research which is also serve as motivation for our research. In this chapter, we focus on one application that

is the main driving force behind this research in eigen-system solvers, the electronic structure simulation

project at the University of Minnesota. We will give some background information about electronic structure

simulation, and characteristics of the eigenvalue problems generated from the simulation. The eigenvalue

algorithm developed in later chapters are designed to solve the eigenvalue problem of the same characteristics

as these matrices.

1.1 Introduction

Many scienti�c and engineering applications give rise to eigenvalue problems, that is, they require the solution

of the following equation

Ax = �x;

where A 2 C

n�n

is n� n matrix, � 2 C is an eigenvalue, and x 2 C

n

is an eigenvector [19, 51, 88, 97, 100,

95, 116, 154]. The particular eigenvalue problem we are interested in is generated from a materials science

research project. The aim of the research project is to understand the dynamics of microscopic particles,

speci�cally electronic structures of complex systems. Using quantum physics, it is possible to explain and

predict certain material properties at a microscopic scale. A key step to the simulation of electronic structure

is to �nd a steady state or a quasi-steady state. Intuitively, the process of �nding this steady state is adjusting

the electron distribution to minimize the total energy of the system. The total energy is a nonlinear function

of the electron distribution. Finding the minimal energy and the corresponding electron distribution can

be viewed as solving for the smallest eigenvalue and the corresponding eigenvector of a nonlinear eigenvalue

problem. The Self-Consistent Field (SCF) iteration is the primary scheme of solving this nonlinear eigenvalue

problem. At each step of the SCF iteration, a linear eigenvalue problem is generated. This is source of our

matrix eigenvalue problem.

The Schr�odinger equation is an non-linear eigenvalue problem. At each step of the SCF iteration, a

matrix eigenvalue problem is generated, to contrast with the overall nonlinear eigenvalue problem, we will

refer to this matrix eigenvalue problem as the linear eigenvalue problem in this chapter. However after this

chapter, we will be concentrating on this linear eigenvalue problem, the \eigenvalue problem" will refer the

linear eigenvalue problem.

In quantum physics, the electron distribution is represented by a wave-function. The governing equation

is the Schr�odinger equation,

H	 = E	; (1.1)

where H is the Hamiltonian operator for the system and E the total energy, 	 is the wave-function [25, 63,

64]. The Hamiltonian operator describes the motion and interaction of the particles of the system. The

wave-function 	 describes where the particles are. The Schr�odinger equation for any nontrivial system is

complex nonlinear Partial Di�erential Equation (PDE). There are many numerical methods for solving a
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PDE [61, 84, 128, 145]. One of the most common numerical approaches to solve the Schr�odinger equation is

to discretize it in a plane-wave basis [63] which is similar to spectral techniques for solving partial di�erential

equations. This discretization scheme turns the Hamiltonian into a large dense matrix that is often too large

to store in a computer's main memory. Usually the matrix is only used in the linear eigenvalue problem,

one work-around to this di�culty is to use a Lanczos-type eigenvalue routine which only need to access

the matrix through matrix-vector multiplications. Because the Fast Fourier Transformation (FFT) can

be used to accomplish the most computation intensive operation in the matrix-vector multiplication, the

matrix-vector multiplication is relatively inexpensive with this alternative.

With the plane-wave basis, the problem is solved in the Fourier Space. A di�erent approach is to solve

the problem in real space by discretizing the Schr�odinger equation with the �nite di�erence scheme [42, 128].

For localized systems, such as a cluster of atoms, high-order �nite di�erence scheme has shown to be more

e�cient than plane-wave techniques in �nding solutions of same accuracy [21, 22, 58, 59]. The matrices

resulting from both �nite di�erence methods and plane-wave techniques are large if the number of particles

in the system is large. In addition, the size of the matrix is also a�ected by the desired accuracy of the

solution, characteristics of the atoms involved, and the physical quantities to be computed. For complex

systems involving hundreds of atoms, the matrix size could be on the order of millions.

Complex systems may also require one to solve many more linear eigenvalue problems before an acceptable

solution for the nonlinear system is reached. If we solve the Schr�odinger equation (1.1) directly only the

smallest eigenvalue is needed. However, if we try to do so, the potential function V would be too complex

to compute. In next section we will show a scheme of simplifying this V . This scheme makes V tractable, at

the same time it requires computation of a large number of eigenvalues from the linear eigenvalue problem.

The number of eigenvalues required is proportional to the number of atoms in the system. Most of the

eigenvalue methods traditionally used for this computation are not very e�ective for �nding a large number

of eigenvalues. This is an additional challenge for an e�ective simulation.

1.2 Ab Initio pseudopotential simulation

The electronic structure of a condensed matter system, e.g., cluster, liquid or solid, is described by a quantum

wave-function 	 which can be obtained by solving the Schr�odinger equation. This equation is very complex,

because the Hamiltonian operator H describes motions of all particles in the system and the interactions

among all of them. Complete analytical solution is only possible for the simplest atoms. Signi�cant sim-

pli�cation is required to compute any large system. Most theories of condensed matter systems make the

following three fundamental approximations to make them manageable.

Born-Oppenheimer approximation Born-Oppenheimer approximation neglects the kinetic energy of

the nuclei. This is a good approximation because of two main reasons. First, the mass of nuclei is much

larger than the mass of electrons in the system, typically more 1000 times larger, nuclei move very slowly

compared to electrons. Second, we are not interested in the average motion of the whole system, in other

word, we will solve the system in the nuclei frame of reference. Because of this approximation, the wave

function we use only involves the electrons. Thus, the original electron-nuclear problem now becomes a pure

electron problem. Under this circumstance, the wave-function describes the distribution of electrons only.

Let r denote a point in space, the density of electron distribution at r is de�ned by

�(r) = 	(r)

H

	(r);

where the superscript H denotes complex conjugate.

Local density approximation To explain the concept of Local Density Approximation (LDA), we will

�rst describe a more general theory, the density functional theory. The density functional theory transforms

a many-electron problem into an one-electron problem. The simpli�ed Schr�odinger equation (1.1) in this

case is called the Kohn-Sham equation,

�

�

1

2

r

2

+ V

tot

[r; �]

�

 

i

(r) = �

i

 

i

(r) (1.2)
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where r

2

is the usual Laplacian operator, V

tot

[r; �] denotes the total potential experienced by an electron

at location r, �

i

is the energy of the ith state, and  

i

is the corresponding one-electron wave-function. For

our purposes, we can simply take (�

i

;  

i

) as the ith smallest eigenvalue and the corresponding eigenvector.

Because of the Pauli exclusion principle, each state can be occupied by two electrons at most. The electrons

will �ll the state with the lowest energy if the temperature is at absolute zero, about �273:15

�

C. In this case,

if the number of electrons is q, we need to �nd q=2 eigenvalues. If the temperature is higher than absolute

zero, or if there there are degenerate states, i.e., eigenvalues are equal to each other, some states may be

partially occupied, then more eigenvalues needs to be computed. In terms of the one-electron wave-function,

the electron distribution is de�ned as

�(r) =

X

occupied states

j 

i

(r)j

2

: (1.3)

The total potential, V

tot

, is the sum of three terms, (1) the potential due to all nuclei and the core

electrons, V

ion

, (2) the Coulomb potential from all other valence electrons, also known as the Hartree-Fork

potential, V

H

, and (3) the exchange-correlation potential, V

xc

,

V

tot

[r; �(r)] = V

ion

+ V

H

+ V

xc

: (1.4)

The Local Density Approximation (LDA) further simpli�es the computation of the exchange correlation

potential, V

xc

. It states that if � changes slowly with respect to r, the exchange-correlation potential can be

approximated by assuming the electron density � to be locally uniform. The potential V

xc

is obtained by

Monte Carlo simulations in this simulation [25, 63].

Pseudopotential approximation Because most core electrons do not change their state during normal

circumstance, thus it is possible to treat a nuclear and the surrounding core electrons as one entity, i.e., an

ion. This is the basis of the pseudopotential approximation. The core of this approximation is to replace

the complex potential function of this ion with a smoothly varying potential without changing its e�ect on

the chemically active valence electrons. This approximation impacts our computation in two ways. First, it

reduces the number of electrons that needs to be treated as unknowns, i.e., reduce the number of eigenpairs

needed. Second, it simpli�es the electronic potential due to ions, V

ion

. Much research has been devoted to

the construction of pseudopotential for di�erent atoms. In our simulations, we use the potential developed

in [148] for the silicon atoms.

For convenience, the ionic potential is broken into two parts, the local term and the non-local term [22]:

V

ion

=

X

a

V

loc

(jr

a

j) +

X

a; lm

�V

l

(r

a

)

< �V

a

lm

>

u

lm

(r

a

)

Z

u

lm

(r

a

)�V

l

(r

a

) d

3

r; (1.5)

where < �V

a

lm

> is the normalization factor,

< �V

a

lm

>=

Z

u

lm

(r

a

)�V

l

(r

a

)u

lm

(r

a

)d

3

r:

Here, the superscript a denotes an atom in position R

a

, r

a

= r �R

a

, u

lm

is the atomic pseudopotential

wave-function associated with angular momentum quantum number (l, m), V

l

(r) is an l-dependent ionic

pseudopotential generated from u

lm

, �V

l

(r) = V

l

(r) � V

loc

(r) is the di�erence between the l component of

the ionic pseudopotential and the local ionic potential. If we set U

alm

(r

a

) = �V

l

(r

a

)u

lm

(r

a

) and consider

the discretization of the equation (1.5) on a uniform grid, the non-local term becomes a sum of rank-one

updates:

V

ion

=

X

a

V

loc

 +

X

a;l;m

t

alm

U

a;l;m

U

T

a;l;m

 ; (1.6)

where t

alm

are normalization coe�cients and all other variables are the discretized matrix and vector forms

of the operators and functions.

The Kohn-Sham equation is a nonlinear equation. A part of its nonlinearity comes from the Hartree-Fork

potential V

H

, which depends on the charge density �(r). The charge density function in turn depends on
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Figure 1.1: Flowchart of the self-consistent iteration for Kohn-Sham equation.

the solution of the Kohn-Sham equation via equation (1.3). Once the charge density �(r) is known, the

Hartree-Fork potential can be found by solving the Poisson equation:

r

2

V

H

= �4��(r): (1.7)

The discrete form of this equation is easily solved by either the Conjugate Gradient method [119], or by

a fast Poisson solver [49, 85]. Both potential V

H

and V

xc

have a local character and are represented by

diagonal matrices when discretized using �nite di�erence scheme on a uniform grid.

Now that we have shown how to compute most of the quantities of the Kohn-Sham equation, we can

describe the Self Consistent Field (SCF) iteration in more detail. The SCF iteration can be viewed as

an inexact Newton method for accelerating the �xed-point iteration V

new

tot

= M(V

tot

), in which M(V

tot

)

represents the process of computing a new potential from the old potential. A owchart of the SCF iteration

is depicted in �gure 1.1. The iteration starts by solving a linear eigenvalue problem based on the current

approximate potential V

tot

. This gives a new series of eigenpairs (�

i

;  

i

). The eigenvalues are used to

determine which states are occupied and the eigenvectors of the occupied states are used to compute the

new electron density �

out

(r). This new electron density is in turn used to �nd a new Hartree-Fork potential

V

H

and a new exchange correlation potential V

xc

. If the di�erence between the newly computed total

potential and the previous one is larger than than the prescribed tolerance � , a new initial guess for V

tot

is

computed through extrapolation and the iteration is repeated. At the end of the self-consistent iteration, a
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Matrix size Eigenvalues

Si

47

H

60

29279 162

Si

71

H

84

37121 262

Si

87

H

76

41923 275

Si

99

H

100

50181 318

Si

147

H

100

59757 420

Si

275

H

172

98745 780

Table 1.1: Matrix size of an simulation series.

Order of

Accuracy �

0

�

1

�

2

�

3

�

4

�

5

�

6

2 -2 1

4 -5/2 4/3 -1/12

6 -49/18 3/2 -3/20 1/90

8 -205/72 8/5 -1/5 8/315 -1/560

10 -5269/1800 5/3 -5/21 5/126 -5/1008 1/3150

12 -5369/1800 12/7 -15/56 10/189 -1/112 2/1925 -1/16632

Table 1.2: Weights for computing second order derivative on uniform grid.

steady state is reached, i.e., a local energy minimum for the current con�guration of nuclei is found.

If the system is time-dependent, e.g., the nuclei are in motion, the problem is discretized in time �rst to

produce a series of quasi-static states which can be solved using the same process shown in �gure 1.1.

1.3 Characteristics of the eigenvalue problems

Having simpli�ed the many-body Schr�odinger system into an one-electron problem, now we proceed to

discretize the Kohn-Sham equation, equation (1.2), into a matrix eigenvalue problems. Traditionally, the

Kohn-Sham equation is discretized in Fourier space [25, 63, 147]. In the past few years we have started

using high-order �nite di�erence schemes [20, 21, 22, 58, 59]. A typical problem solved in our simulations

might consist of a few hundreds of atoms, using 12th order �nite di�erence of the Kohn-Sham equation on a

60� 60� 60 uniform grid. Table 1.1 shows the matrix sizes and the numbers of eigenvalues computed for a

series of Silicon cluster simulations. Because the simulation software excludes the region where the electron

density is negligible, the matrix size is usually less than the numbers of the total grid points for the problems

solved.

In matrix form, the Hamiltonian is the sum of a Laplacian matrix, three diagonal matrices and a matrix

representing the nonlocal contributions. Two of three diagonal matrices come from discretizing V

xc

and V

H

.

The third one is due to the local part of the ionic potential V

ion

. The nonlocal matrix is from the nonlocal

ionic potential which can be expressed as sum of a sequence of simple rank-one updates over all atoms and

quantum numbers, see equation (1.6). Typically, a small number of steps is required for the SCF iteration

to converge. The matrix is symmetric for simple isolated systems, it can be complex Hermitian when any

periodicity is presented in the system, e.g., crystal, or surface of crystal.

The �nite di�erence scheme used is developed by Fornberg and colleagues [42, 43, 44]. It is used to

discretize the Laplacian operator in equation (1.2) on a uniform grid. In one-dimensional case, the second-

order derivative can be expressed as

d

2

u

dx

2

�

�

�

�

i

=

1

h

2

0

@

�

0

u

i

+

X

j=1

�

j

(u

i�j

+ u

i+j

)

1

A

;

where h is the distance between grid points, u is an arbitrary function. The coe�cients �

i

are shown in

6



0 500 1000 1500

0

200

400

600

800

1000

1200

1400

1600

1800

nz = 57289

Figure 1.2: The nonzero pattern of a matrix for Si

2

cluster.

table 1.2 [21, 42]. Depending on the accuracy desired, we can choose the number of neighbors to involved in

the above equation. To extend to 3-D case, we simply approximate the derivative of each direction separately.

For a case where 12th order accuracy is needed, 36 neighboring nodes are used to form the discrete form of

the Laplacian operator, 6 from each of �x, �y and �z directions.

In most test cases, we use a slightly modi�ed form of the natural ordering for the grid points. This

ordering scheme di�ers from the natural ordering in that it alternates between counting along +x direction

and �x direction. It reduces the chance of memory bank conict on some computers because it creates more

variances in the memory access patterns of operations such as matrix-vector multiplication.

In the �nite-di�erence matrix, the discrete form of the Laplacian operator dominate the non-zero pattern.

If the 12th order centered �nite di�erence is used, about 37 nonzero elements are generated for each row

of the matrix. The non-local interaction generated from V

ion

involves about 100 or so grid points around a

silicon atom. This adds about 100 nonzero elements for selected rows of the matrix. Our �nite di�erence

scheme produces Hermitian or symmetric matrices. Figure 1.2 shows the nonzero pattern of a matrix for a

two-silicon cluster. This matrix plotted in �gure 1.2 is only 1939� 1939. The net-like pattern is due to the

modi�cation to the natural ordering. In the center of the graph, the non-local interactions appears as two

squares. The grid points with same z coordinate are number closer to each other which form a structure that

is similar to the overall structure of the matrix. The size of these smaller structure decrease away from the
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center of the matrix because more grid points are unused on the plan with same z value due to the exclusion

of low electronic density regions.

A linear eigenvalue problem is produced at each self-consistent iteration. The matrix for the eigenvalue

problem can be attributed to four sources, the Laplacian operator, V

ion

, V

H

, and V

xc

. From one SCF

iteration to the next one, the Laplacian part of the matrix will not change as long as the grid size is the

same. The matrix generated from V

ion

does not change if ions do not move. Using the centered �nite

di�erence discretization, the potential V

H

and V

xc

are transformed into two diagonal matrices. At each

self-consistent iteration, V

H

and V

xc

varies with �, i.e.,  

i

. Thus, the di�erence between matrices from two

successive iterations is only on the diagonal of the matrices. As the nonlinear problem converges, we expect

the change in V

H

and V

xc

to decrease. Therefore the solution of previous linear eigenvalue problem will be

a good initial guess for the next eigenvalue problem.

To reduce storage, the Laplacian part of the matrices is stored in stencil form, i.e., one row of coe�cients

in table 1.2 is stored as the matrix elements. A 2-D array ja is used to maintain the index information of the

matrix where the jth neighbor of ith grid point is ja(i,j). The potential is broken into components and

stored in two parts. All three diagonal matrices are summed together in one vector. The nonlocal potential

is stored as a series of short vectors to be used in the rank-one updates.

In summary, the eigenvalue problems we would like to address here are large, sparse and Hermitian. For

realistic applications, a large number of eigenvalues and eigenvectors are desired. Good initial guess are

available in most cases.
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Chapter 2

Krylov Eigenvalue Solvers

This chapter explores the similarities and di�erences between the Arnoldi method and the Davidson method.

Based on their similarities, a generic eigenvalue solver is extracted. Several di�erent variations of this generic

algorithm are studied by varying the input vector given to the preconditioner. Without preconditioning, these

variants are mathematically equivalent to each other. However in practice, there are quite di�erent due to

di�erence in numerical properties. With preconditioning they behavior drastically di�erent. Through this

study, we will identify a numerically stable variation that works well with simple preconditioners.

2.1 Introduction

An eigenvalue � and an eigenvector x of a matrix A is de�ned by the following equation

Ax = �x:

The eigenvalue problems of interest here have Hermitian matrices whose eigenvalues are always real and their

corresponding eigenvectors always exist. In addition, these matrices are also sparse which means there are

only a small number of nonzero entries compared to total entries in the matrix. For this type of matrices,

they are usually not stored in a 2-D n � n array, where n is the matrix size. Thus, they only require a

fraction of the storage compared to a full matrix of the same size. The trade-o� is that accessing a matrix

element is often not as fast or as convenient as a matrix stored in a 2-D array.

In this thesis, we will address only symmetric eigenvalue problem since it is straightforward to extend

everything discussed to Hermitian case. There are many ways of extracting eigenvalues and eigenvectors

from a symmetric matrix [19, 27, 51, 95, 116, 154]. In this section we review the basic techniques for large

sparse symmetric eigenvalue problems to identify a suitable starting point for our study.

Eigenvalue solvers may come very di�erent forms, however most of them can be either classi�ed as a

QR-type method or a projection method. QR-type methods are very robust in �nding eigenvalues and

corresponding eigenvectors [51, 153, 154] and mature implementations of QR algorithm are widely available

[4, 52, 127]. They generally require O(n

2

) storage and O(n

3

) operations. If the matrix size is relatively

small, say less than a few hundreds, and all eigenpairs are needed, a QR based method is the best choice

for the task. The entire set of n eigenvalues is referred to as the spectrum of the matrix. In most practical

eigenvalue problems, the matrix size is large, and only part of the spectrum is needed, a QR method is

usually not an e�ective choice.

Contrast to a QR method, projection methods are designed to extracts part of the spectrum e�ectively.

Often, it only needs to access the matrix A through matrix-vector multiplication. For sparse matrices where

the matrix is not stored in the usual n � n array, only need to perform matrix-vector multiplication with

the matrix could signi�cantly reduce the complexity of the eigenvalue program. A projection method for

eigenvalue problems has two major components, one to generate a basis, the other to generate approximate

solution by projecting the original eigenvalue problem into the basis. Most of variations on di�erent eigen-

value solvers are in the basis generation part which will be reviewed in next section. Here we will focus on

the projection techniques to generate approximate eigenvalues and eigenvectors.
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There are two common methods to �nd eigenvalue approximations on a given basis, they are the Rayleigh-

Ritz projection [51, 154] and the harmonic Ritz projection [78]. Given a m-dimensional basis V 2 R

n�m

,

both projection techniques seek approximate solutions of the form

�

x = V y;

� = x

T

Ax=x

T

x:

(2.1)

where � is an approximate eigenvalue, x is an approximate eigenvector, and y is chosen by the two projection

techniques according to their criteria. An eigenvalue and an eigenvector together is often referred to as an

eigenpair. To reduce the number of symbols used, the exact value of a quantity will use the same symbol as

the approximate value. The di�erence is that a superscript `�' will be attached to the exact one, for example

(�

�

; x

�

) denotes an exact eigenpair. The approximate eigenvalue in the above equation is de�ned as a ratio

known as the Rayleigh quotient. An eigenvalue approximation may not be a Rayleigh quotient. However,

due optimality of Rayleigh quotient [95], it is often the favorite choice. The eigenvalue and eigenvector

approximation computed from the Rayleigh-Ritz projection are also known as the Ritz value and the Ritz

vector.

Usually V is an orthonormal basis. In which case, � = x

T

Ax = y

T

V

T

m

AV

m

y = y

T

H

m

y. This means

that the Ritz values are the eigenvalues of H

m

� V

T

m

AV

m

. Because the size of H is usually small, a QR

method can e�ciently �nd its eigenvalues and eigenvectors. In addition, to get a normalized x, we only need

to choose a normalized y. Since y is much smaller in size than x, it is a lot easier to normalize y. These

are good motivations to maintain V

m

orthonormal. However in general, the basis V does not need to be

orthonormal. The residual of the above approximation is

r � Ax� �x = AV y � �V y:

The Rayleigh-Ritz technique projects the original eigenvalue problem Ax = �x by making the residual

of the approximate solution orthogonal to the basis V , i.e.,

V

T

(AV y � �V y) = 0: (2.2)

Let H = V

T

AV , and V be an orthonormal basis, i.e., V

T

V � I , then � and y can be found by solving the

following projected eigenvalue problem

Hy = �y: (2.3)

This projected eigenvalue problem is usually solved by using a QR method from LAPACK [4] or EISPACK

[52, 127]. An eigenvector y of equation (2.3) is chosen to generate an approximation to the original eigenvalue

problem based on equation (2.1). For example, if the smallest eigenvalue of A is sought, the eigenvector

corresponding to the smallest eigenvalue of H is taken. In this case, the eigenvalue approximation � can be

easily computed. It is simply the eigenvalue of H corresponding to the chosen y. This is another advantage

of using orthonormal basis. The following algorithm describes a version of the Rayleigh-Ritz procedure we

will use later.

Algorithm 2.1 Rayleigh-Ritz projection to �nd an approximate solution to the smallest eigenvalue �

and corresponding eigenvector x.

Given an orthonormal basis V ,

1. H = V

T

AV ,

2. �nd the smallest eigenvalue of H and corresponding eigenvector y,

3. the approximate solution to the smallest eigenvalue of A is the smallest eigenvalue of H, the corre-

sponding Ritz vector is x = V y. The residual of the approximation is r = Ax� �x = AV y � �V y.

The harmonic Ritz projection is a relatively new technique which follows the following orthogonality

condition on the residual [78, 91]

(AV )

T

(AV y � �V y) = 0: (2.4)

10



By de�ning W � AV , this equation can be rewritten as

WA

�1

Wy =

1

�

W

T

Wy;

which represents a Rayleigh-Ritz projection of A

�1

on the basis W . To �nd a vector y for equation (2.1),

the following projected eigenvalue problem is solved,

Hy = �Gy (2.5)

where H = V

T

AV and G = (AV )

T

(AV ). Usually, the matrix A is also shifted to favor the eigenvalue

sought. For example, if the eigenvalue wanted is close to �, the above de�nition of H and G are rede�ned

as follows,

H = V

T

(A� �I)V G = V

T

(A� �I)

T

(A� �I)V:

The vector y needed for equation (2.1) is chosen from the eigenvectors of the above generalized eigenvalue

problem. Once y is chosen, we can compute the approximation to the original eigenvalue problem using

equation (2.1).

The harmonic Ritz projection algorithm shown below is one of the schemes shown in [78]. There are

di�erent realization of the harmonic Ritz projection, the one chosen here has orthonormal basis V which

make it very easy for it to share the same basis generation procedures with the Rayleigh-Ritz projection

algorithm described before.

Algorithm 2.2 Harmonic Ritz projection for �nding an approximation of the smallest eigenvalue and

corresponding eigenvector of a symmetric matrix A.

Given an orthonormal basis V 2 R

n�m

, W � AV ,

1. H =W

T

V; G =W

T

W .

2. Solve the generalized eigenvalue problem HY = LGY to �nd Y; L 2 R

m�m

. For convenience, columns

of Y are normalized.

3. Let � be the minimum of diag(Y

T

HY ), y be the corresponding vector such that � = y

T

Hy,

4. � is the approximation to the smallest eigenvalue, x = V y is the corresponding eigenvector approxima-

tion, the residual r =Wy � �x is the associated residual vector.

Both the Rayleigh-Ritz procedure and the harmonic Ritz procedure can be used to �nd eigenvalues other

than the minimum eigenvalue by selecting y according to di�erent criteria. The descriptions here are geared

toward the eigenvalue problem on hand. It should be a trivial change to adapt them for di�erent needs.

The Rayleigh-Ritz projection is widely used. It is observed that Rayleigh-Ritz procedure is e�ective

in approximating the extreme eigenvalues [95] and the harmonic Ritz projection is e�ective in extracting

eigenvalue in the interior of the spectrum [78]. Since we are seeking extreme eigenvalues, we are naturally

inclined toward using the Rayleigh-Ritz projection. However, a large number of eigenvalues is desired, some

of them could be considered interior eigenvalues where harmonic Ritz projection is more suited. The focus

of this chapter is on the basis generation schemes, Rayleigh-Ritz projection is used through out.

For some nonsymmetric matrices, the projected eigenvalue problems, equations (2.3) and (2.5), could be

defective. In which case, the number of eigenvectors will be less than the size of the matrix. Because the

Schur vectors can always be computed, if the matrix A is not symmetric, using a Schur vector as y is a more

reliable choice [130, 131]. Since the matrix of interest is Hermitian, we will only use eigenvectors of (2.3)

and (2.5) as y for equation (2.1).

2.2 Projection methods for eigenvalue problems

All the projection methods for eigenvalue problems can be described by the following abstract algorithm.
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Algorithm 2.3 A generic algorithm for solving eigenvalue problem, AX = X�, where A 2 R

n�n

, X may

have arbitrary number of columns.

1. Given an initial basis V

i

, expand its size to form V

m

2 R

n�m

.

2. Apply one of the projection schemes on V

m

to generate an approximate solution.

3. If the residual norm of the approximation is smaller than a preset tolerance, stop, else collapse V

m

to

V

i

and go back to step 1.

The aim of section is to review existing schemes for generating a new basis. Di�erent methods use

di�erent initial basis size i and maximum basis size m. More importantly, they di�er on how to extend V

i

to V

m

.

Subspace iteration This type of methods are mainly used for �nding dominant eigenvalues, and can be

considered extensions of the power method. Some examples include the power method, inverse iteration,

the Rayleigh-Quotient iteration [93, 95], simultaneous iterations [104, 105], the trace minimization method

[56, 122], and the preconditioned subspace method [65]. Software based on this approach includes RITZIT for

symmetric matrices [105], and SRRIT for nonsymmetric matrices [12]. One very distinct feature of this family

of methods is that V

i

and V

m

are the same size. These methods are generally considered reliable because

they converge to the desired solutions. However they often take many more matrix-vector multiplications

than the Krylov methods we will discuss next.

In iterative sparse linear system solvers, in order to speed up the convergence, an auxiliary linear system

is solved. Solving this auxiliary linear system is called preconditioning [10, 119]. Similar approaches have

also been applied to speed up the convergence of eigenvalue solvers. Preconditioning techniques for Krylov

eigenvalue solvers are more well published in the United States [19, 116] than preconditioning for the subspace

iteration techniques [16, 65]. This is a slight disadvantage for the subspace iteration methods. In summary,

after a brief review of this type of methods, we have decided to concentrate our attention on other methods

to be discussed.

Krylov methods Given a matrix A and a vector v, Krylov subspace is the span of fv;Av;A

2

v; : : :g.

Methods in this family generate Krylov subspace bases and then extract eigenvalue and eigenvector approxi-

mations from the bases. The power series, v;Av;A

2

v; : : : does not make a good basis because the vectors late

in the sequence could become very close to each other. One e�ective process for generating an orthonormal

basis of a Krylov subspace is the Arnoldi algorithm described below [5, 116]

Algorithm 2.4 The Arnoldi method for generating an orthonormal basis. Given an initial vector v and

maximum basis size m, let v

1

; v

2

; : : : ; denote the columns of the basis V , v

1

= v=kvk, and V

j

= [v

1

; v

2

; : : : ; v

j

]

be the �rst j columns of V , for j = 1; : : : ;m, do the following,

1. z = Av

j

.

2. h

ij

= v

T

i

w

j

, i = 1; : : : ; j; z = z � V

j

[h

1j

; : : : ; h

jj

]

T

.

h

j+1;j

= kzk, v

j+1

= z=kzk.

This algorithm generates a basis satisfying

AV

m

= V

m

H + �v

m+1

e

m

; (2.6)

where V

m

= [v

1

; : : : ; v

m

], e

m

is the mth column of the identity matrix, � = h

m+1;m

and H = (a

ij

); i; j =

1; 2; : : : ;m. A crucial characteristic of this equation is that the matrix H is upper Hessenberg. Any basis

that satis�es this equation equation will be referred to as an Arnoldi basis. Note that this Hessenberg matrix

H is also the same matrix H needed for both projection techniques, see equation (2.3) and (2.5). This is

one reason why the Arnoldi algorithm is a favorite for building basis for projection methods.
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For symmetric matrices, the Hessenberg matrix H becomes a tridiagonal matrix. Step 2 of the Arnoldi

algorithm can be simpli�ed since h

1j

= : : : = h

j�2;j

= 0:. The well known Lanczos algorithm can be viewed

as this simpli�ed algorithm [50, 69]. Step 2 in algorithm 2.4 can be express as

h

j�1;j

= h

j;j�1

; h

jj

= v

T

j

z; z = z � h

j�1;j

v

j�1

� h

jj

v

j

:h

j+1;j

= kzk; v

j+1

= z=kzk:

Eigenvalue solvers based on this scheme are very e�ective in �nding a few extreme eigenvalues of a matrix.

Extensive studies have been done on the Lanczos algorithm for symmetric eigenvalue problems [27, 28, 67,

95, 96, 109, 154]. The books by Parlett [95] and by Cullum and Willoughby [27, 28] are good references on

applying it to symmetric eigenvalue problems. A number of eigenvalue solvers based Lanczos algorithm are

available from NETLIB mathematical software repository

1

.

When the matrix is not symmetric, the Lanczos algorithm can be generalized in two ways: the nonsym-

metric Lanczos algorithm and the Arnoldi algorithm. The nonsymmetric Lanczos algorithm still tridiago-

nalizes the matrix, but it requires two sets of bi-orthogonal bases [13, 11, 51, 54, 55, 116, 154]. Software

packages based on nonsymmetric Lanczos algorithm are also available from NETLIB and other archives.

The Arnoldi algorithm can be used for both symmetric and nonsymmetric eigenvalue problems [5, 110].

In the symmetric case, the di�erence between the Lanczos algorithm and the Arnoldi algorithm is that the

later one maintains an orthonormal basis by explicitly orthogonalizing the new vector against all existing

vectors while the Lanczos algorithm only orthogonalizes the new vector against two previous ones. Because

of this, it is easier for the Arnoldi method to maintain an orthonormal basis than the Lanczos method. Due

to round-o� error in digital computer, one pass through the orthogonalization step of the two method may

not produce a result that is orthogonal to the existing basis. This is the loss of orthogonality problem. It is

simpler to detect this problem in the Arnoldi algorithm than in the Lanczos algorithm [29]. Much research

has been done on detecting and correcting the loss of orthogonality problem in Lanczos eigenvalue methods

[53, 94, 96]. Many schemes have been developed as the result of the research, but they are usually quite

complex. For simplicity, we prefer the Arnoldi method over the Lanczos method.

Preconditioning can be easily introduced into the Krylov eigenvalue solvers [81, 116]. Most of the pre-

conditioners used for solving linear systems can be directly translated into preconditioned Krylov eigenvalue

solvers [8, 9, 66, 76, 114, 118, 152]. Usually, preconditioning is easier to apply to the Arnoldi method than

the Lanczos method. Very simply, to perform preconditioning, one can simply change step 1 of algorithm 2.4

to

z =M

�1

Av

j

;

where M is the preconditioner which approximates A in some way [116], For example, M = diag(A) � �I

[30].

In the class of Lanczos methods, Ruhe's variation of implementation of block Lanczos method was very

instrumental in our development of block eigenvalue solvers [102]. It shows that the initial block size don't

have to the subsequent block size.

Given a maximum basis size, the computational complexity of the Arnoldi algorithm is about 2m

2

n.

Computing the eigenvalues and eigenvectors of H using a QR algorithm generally required O(m

3

) operations.

For large m, these facts mean that the Arnoldi method for �nd eigenvalues could be very expensive. For

this reason, practical Arnoldi eigenvalue solvers use relatively small m, e.g., 20 - 30. However, choice of m

should be made with consideration of many factors, for example, computer memory available, number of

eigenvalues sought, size of the matrix, and so on. If m is large, less restart is needed to reach convergence

but building a large basis is expensive. If m is small, it is cheap to build a basis V

m

, but more restart

will be needed. Finding an optimal choice is an open research question [120]. Traditionally, at restart, the

current Ritz vector is used as the starting vector to build another Krylov basis. This is referred to as explicit

restarting to contrast with what is described next.

Implicitly Restarted Arnoldi method This is a fairly new method due to Sorensen [131] which has

quickly caught the attention of many researchers [73, 83, 135]. A software package based on this technique

is available [129]. It is named Implicit Restart Arnoldi (IRA) because it restarts in such a way that the

starting vector for the new basis is never explicitly computed. There are two special characteristics that

1

The URL is http://www.netlib.org/.
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deserve some special attention. First, the Implicitly Restarted Arnoldi (IRA) method can be interpreted as

an incomplete QR method [130, 131]. Thus it links the QR algorithm with the Arnoldi algorithm. A great

deal of research has been done on improving the convergence rate of QR methods. Now these techniques is

available to be transplanted to the Arnoldi algorithm.

Another important characteristic of IRA is in the restarting technique. IRA restarts by keeping a sig-

ni�cant portion of the old Arnoldi basis. Even though the idea of saving more than one Ritz vector was

discussed in [31], the recent interests in restarting techniques were directly sparked by the development of

IRA method [70, 70, 72, 83, 135]. IRA method successfully demonstrated the potential of keeping more

vectors at restart [70]. In the context of Davidson method, Stathopoulos and colleagues call this strategy of

restarting thick restart [134]. Morgan showed an analytical argument for preserving more Ritz vectors for

the Arnoldi method [83]. The approximate eigenvectors saved in the basis deate the relevant part of the

spectrum and e�ectively increase the gap between the wanted eigenvalues and the unwanted ones [83]. This

characteristics was further exploited in [135] to produce a dynamic restarting scheme.

Davidson method The original Davidson eigenvalue method was proposed in 1975 [30]. By 1989, when

Davidson published his survey, the method had gone through a series of signi�cant improvements [31]. Many

novel techniques used in the Davidson method and its variants have greatly inuenced the development of

other methods. It pioneered an early form of preconditioning which is still commonly used today, and it is

the �rst to allow restarting with more vectors than the desired number of eigenvectors which is an important

feature of IRA.

The Davidson method was initially designed to �nd a few smallest eigenvalues of the Schr�odinger equa-

tion from quantum Chemistry applications [30]. Now it is a common technique for �nding a few extreme

eigenvalues of large matrices generated from �elds ranging from numerous science and engineering �elds

[31, 116]. Publications available on the Davidson method are extensive [14, 26, 31, 32, 40, 41, 77, 79, 80,

86, 87, 120, 125, 136]. The original Davidson method was proposed for symmetric eigenvalue problems, but

later developments have generalized it to nonsymmetric eigenvalue problems and generalized eigenvalue prob-

lems [31, 77, 79, 120]. Another area of development is the block versions of the Davidson method [32, 79].

More importantly, there has been considerable new developments in preconditioning and restarting tech-

niques [90, 125, 133]. The scheme proposed in [90] modi�es the original Davidson preconditioning scheme to

make the result of preconditioning orthogonal the current eigenvector approximation. The Jacobi-Davidson

method by van der Vorst and colleagues is another way of realizing the same intension starting from a dif-

ferent point of view [14, 41, 125]. A signi�cant contribution from [133] is the use of biased estimate for the

shift in preconditioning which can address a number of issues facing the original Davidson preconditioning

scheme.

Similar to the Arnoldi method, the Davidson method also needs restart. So far only explicit restart is

available for the Davidson method. Without restart, the Davidson method would eventually converge for

every matrix as m approaches n. Crouzeix, Philippe, and Sadkane showed that the restarted version of

the Davidson method also converges [26]. There is a strong connection between the Davidson method and

Newton method for eigenvalue problem, the Davidson preconditioning step is regarded as solving an equation

from the Newton method for eigenvalue problems. Due to this connection, it is believed that given a good

preconditioner, the Davidson method can converge quadratically.

In short, two classes of methods appear to be good candidates for our needs, the Krylov method and the

Davidson method. Next we consider one from each class for further evaluation. The Arnoldi method and

the original Davidson method are selected because they are simple to implement and easy to use. Many

steps in the Arnoldi method and the Davidson method are the same. For this reason, we will only give one

complete eigenvalue algorithm including all steps mentioned in algorithm 2.3. We have shown the Arnoldi

method for generating an orthonormal basis, and the Rayleigh-Ritz projection algorithm. So we will show

a complete Davidson algorithm to demonstrate how the components work together, see [30] for the original

form of the algorithm.

The Davidson eigenvalue method is the easiest to understand when described as an algorithm for �nding

one eigenvalue and restart with the current Ritz vector. This is what is shown in algorithm 2.5. As before

V

j

denote the �rst j columns of V . For convenience, we use V

0

to mean null, or literally �rst 0 column of V .

Algorithm 2.5 Davidson's algorithm for �nding the smallest eigenvalue of a symmetric matrix A.
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1. Start. Choose an initial guess for the eigenvector, x. Let z = x.

2. Iterate to build an orthonormal basis V

m

= [v

1

; v

2

; : : : ; v

m

]. Let j = 1.

(a) z = z � V

j�1

V

T

j�1

z, v

j

= z=kzk.

(b) w

j

= Av

j

.

(c) h

ij

= v

T

i

w

j

, for i = 1; : : : ; j.

(d) if (j < m) then �nd a new vector z to augment V

j

,

i. compute the residual vector r is current best approximate solution.

ii. z =M

�1

r,

iii. Let j = j + 1, goto 2.a.

else continue to step 3.

3. Rayleigh-Ritz procedure to �nd the best approximate solution (�; x) and the corresponding residual

r using the basis V

m

.

4. Convergence test. If krk is smaller than the preset limit, � , stop, else let z = x, go to step 2.

In above algorithm, the parameter m is preset and it is chosen to be a small number such as 20 or 30.

Conceptually, the three steps of algorithm 2.3 are the steps 2, 3, and 4 of algorithm 2.5, where step 2 builds

an orthonormal basis and step 3 performs the Rayleigh-Ritz projection on the basis to extract the wanted

eigenvalue and eigenvector. More speci�cally, step 2.a describes a classic Gram-Schmidt orthogonalization

procedure. It orthogonalizes z against existing basis vectors and append the resulting normalized vector to

the basis to form a new one. This step is responsible for keeping the basis orthonormal. Step 2.b performs

matrix-vector multiplication. Step 2.c computes a new column of H = V

T

AV . Steps 2.b and 2.c are placed

here to progressively compute H . If we simply let z = w

j

, it is easy to verify that step 2 is a slightly

rearranged form of the Arnoldi algorithm. The essential di�erence between the Davidson method and the

Arnoldi method is in how they generates a new vector to augment the basis. To change algorithm 2.5 into

a preconditioned Arnoldi method, we could simply skip step 2.d.i and replace step 2.d.ii with z =M

�1

w

j

.

2.3 Alternative input vectors

Based on the observed commonalities and di�erences between the Arnoldi method and the Davidson method,

a generic algorithm for generating a basis of a given size can be written as follows.

Algorithm 2.6 A algorithm for generating an orthonormal basis V

m

from b

0

input vectors. The

basis is also required to be orthogonal to an orthonormal set X.

0. Place the b

0

input vectors at the �rst b

0

columns of V . Let j = 0 and b = b

0

.

1. Orthonormalization.

[v

j+1

; : : : ; v

j+b

] = (I � V

j

V

T

j

�XX

T

)[v

j+1

; : : : ; v

j+b

], where V

j

= [v

1

; : : : ; v

j

].

Perform QR decomposition on the new vectors, QR = [v

j+1

; : : : ; v

j+b

], and replace [v

j+1

; : : : ; v

j+b

] with

�rst b columns of Q.

2. j = j + b; b = b

1

.

3. If j < m, continue, else stop.

4. Compute b vectors, s

1

, : : :, s

b

to give to the preconditioner.

5. Apply the preconditioner, [v

j+1

; : : : ; v

j+b

] =M

�1

[s

1

; : : : ; s

b

].

6. Goto step 1.
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This algorithm combines a number of techniques used in more complex eigenvalue solvers. It is can be

made to either reproduce algorithm 2.4 or the step 2 of algorithm 2.5. If b

0

= b

1

= 1 and s

1

= Av

j

in step

4, then it is the Arnoldi algorithm. If b

0

= b

1

= 1 and s

1

= r, then it is the generates the same basis as the

Davidson algorithm 2.5. In addition, we have incorporated a few changes to make it more exible. First it

can take an arbitrary number of input vectors. This feature originates from the Davidson method [31], has

been successfully used by many researchers [73, 83, 131, 135]. The augmented Krylov subspace concept is

also very similar to this idea [106]. Our experiences also show this to be a worthwhile feature to have. For

convenience of discussion we have split step 2.d of algorithm 2.5 to make it into four separate steps. Steps

2.b and 2.c of algorithm 2.5 are not shown in this algorithm because they are primarily used to produce the

projected matrix H

m

for the Rayleigh-Ritz procedure. In practice we may compute H

m

progressively either

for e�ciency concern or to use the intermediate H

j

in the step 4 of algorithm 2.6. A good example of this is

the Davidson method where it is necessary to compute the residual vectors for preconditioning, the matrix

H

j

has to be available at every step.

Step 1 of the above algorithm is the orthonormalization step. It can be viewed as a progressive QR

decomposition which orthonormalizes new vectors as they are generated. The basis is also required to

be orthogonal to an additional set of vectors here. Usually this additional set of vectors are converged

eigenvectors. This is part of the process necessary for locking converged eigenvectors out of the working

basis. What is shown here is only intended to be a mathematical formula, some attention to details are

required to guarantee the quality of basis produced. This issue and many other implementation issues are

addressed in next chapter. Although it is possible to set b

1

to any number in step 2 of algorithm 2.6, we

have found it to be more e�ective if b

1

is set to 1 in most cases. We use b

1

= 1 through out the thesis unless

speci�cally stated otherwise. Both b

0

and b

1

may be referred to as the block size [102, 116], in our discussion,

we will always call b

1

the block size and b

0

the initial basis size. Since b

1

is usually 1, we will drop subscript

1 in s

1

is step 4 and 5 in algorithm 2.5.

In the Arnoldi method, if the current block size b is less than the value in the proceeding step, there is a

choice to be made on what to include in s. A simple scheme we use is to always choose the �rst b new Av

j

's.

This can be viewed as a di�erent implementation of the augmented Krylov subspace described in [18, 106]

In the jth step of the Davidson method, it is possible to compute j residual vectors. The process of

choosing b out of j residual vectors is commonly referred to as targeting. A simple scheme we will use here

is to choose b residual vectors corresponding to the �rst b wanted eigenvalues for most of our experiments.

No matter what is the size of the block, there is only one eigenvalue we consider as the targeted eigenvalue

at any time. This relates to the choice of shift used in the preconditioner.

In the frame work of this generic basis generation algorithm, we can vary what is generated in the step

4 to signi�cantly a�ect what basis is generated. The main focus of this chapter is to vary the input vector

generated in this step of the algorithm. Next we will given each one of them one at a time.

Orthogonalized Arnoldi scheme One di�erence between the Davidson method and the Arnoldi method

is that the Davidson method needs to compute the current residual vector at every step. If we neglect the

operations required to solve the small eigenvalue problem, and assume that both V

j

and W

j

� AV

j

are

saved in memory, computing one residual vector needs about 2jn oating-point multiplications and 2jn

additions. This is a signi�cant amount of oating-point operations. We would like to reduce this operation

count if possible. Notice that in many cases the Davidson method works better than the Arnoldi method,

the question becomes what properties of the residual vector is important to the performance of the Davidson

method. The Davidson method uses Rayleigh-Ritz projection to extract eigenvalue approximation. From the

orthogonality condition, equation (2.2), we know that the residual of the approximate solution is orthogonal

to the current basis. If the current basis satis�es the Arnoldi recurrence relation AV

j

= V

j

H

j

+ �u

j+1

e

T

j

,

then the residual of the Rayleigh-Ritz approximation is

r = AV

j

y � �V

j

y = V

j

H

j

y � �V

j

y + �u

j+1

e

T

j

y:

Since H

j

y = �y, see equation (2.3),

r = �e

T

j

yu

j+1

:
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According to the Arnoldi recurrence, w

j

� Av

j

=

P

j

i=1

h

ij

v

i

+ �u

j+1

, if we orthogonalize w

j

at step 4 of

algorithm 2.6, the vector given to the preconditioner will be

s = �u

j+1

;

which is parallel to the residual of the Davidson algorithm. Therefore the two schemes would generate the

bases spanning the same space.

There is a fairly inexpensive way of modifying the Arnoldi method to make Av

j

orthogonal to the basis

vectors.

(I � V

j

V

T

j

)Av

j

= Av

j

� V

j

(V

T

j

Av

j

)

Since V

T

j

Av

j

is already computed in the process of computing H

j

= V

T

j

AV

j

, orthogonalizing Av

j

against

V

j

is only half as expensive as computing a residual vector. Let h

j

2 R

j

denote V

T

j

Av

j

, the preconditioning

vector of this scheme is

s = Av

j

� V

j

h

j

: (2.7)

In theory, this vector is orthogonal to the basis V

j

. If no preconditioning is used, this would be the redundant

because it will be explicitly orthogonalized against V

j

again in step 1 of next iteration, see algorithm 2.6.

Modi�ed Arnoldi method This scheme can be considered a trivial implementation of the approximate

Cayley transformation scheme presented in [75]. If the current targeted eigenvalue is �, this scheme compute

the s as follows

s = (A� �I)v

j

: (2.8)

This is a simple modi�cation to the Arnoldi method. Since Av

j

is computed while computing H , only 2n

additional oating-point operations are needed to compute s.

The advantages of this scheme is articulated in [75]. One of the main points is that the preconditioned

iteration matrix M

�1

(A � �I) has one eigenvector that is close to the solution. The eigenvalue scheme

presented in [75] is a new way of combining the Arnoldi method and the Davidson method.

Harmonic Davidson scheme The Davidson method computes the residual vector based on Rayleigh-Ritz

projection. The Rayleigh-Ritz procedure is shown to have many optimality conditions, see for example [95].

However it is not the only way to extract eigenvalue approximation from a basis V

m

. Notably the harmonic

Ritz values has attracted much attention in research community [78, 82, 91, 125]. The harmonic Ritz value

techniques proposed in [78] can be immediately applied to the Davidson method by replacing the Rayleigh-

Ritz procedure with the harmonic Ritz procedure. According to the norm used to maintain orthogonality

among the basis vectors, three ways of implementing the harmonic Ritz procedure was proposed in [78], (1)

use 2-norm, (2) use A

T

A-norm, i.e., maintain W

m

2-norm orthonormal, or (3) use A-norm, i.e., maintain

V

m

and W

m

bi-orthogonal. In [78], an example of harmonic Lanczos method which maintained V

m

2-norm

orthonormal was shown. In [125], the authors proposed a harmonic Davidson method which maintains V

m

and W

m

bi-orthogonal.

The scheme we will use here is a mixture of both the Rayleigh-Ritz technique and the harmonic Ritz

technique. In particular, we use harmonic Ritz values to generate new input vectors to the preconditioner,

the vector s in step 4 of algorithm 2.6, but use the Rayleigh-Ritz procedure to generate the approximate

solution when the basis is full after algorithm 2.6. Because we keep the basis V orthonormal in Davidson's

method, we use the harmonic Ritz procedure proposed in [78].

This scheme is more expensive compared to the Davidson scheme mainly because it needs both H

m

and

G

m

. Compared to the Davidson method, this scheme need 2jn extra FLOP to update G

j

into G

j+1

.

2.4 Equivalence properties

So far we have described �ve di�erent ways of generating orthonormal basis V

m

, (1) the Arnoldi method,

(2) the Davidson method, (3) the orthogonalized Arnoldi method, (4) the modi�ed Arnoldi method, and (5)

the harmonic Davidson method. This section compares the di�erent schemes without preconditioning, i.e.,

M = I in step 5 of algorithm 2.6.
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Starting with same initial vectors, all other aspects being equal, the basis V

m

built by the Arnoldi

method and the orthogonalized Arnoldi method are identical because the extra orthogonalization step in the

orthogonalized Arnoldi method does not alter the resulting basis vector at any step. This is true in theory,

in practice because of round-o� error, the orthogonalized Arnoldi is slightly more stable because of the extra

orthogonalization step. The modi�ed Arnoldi method also produces exact the same basis at the original

Arnoldi method. To compare the other two methods, we need the help of the following lemma.

Lemma 2.1 Assume V

j

is an Arnoldi basis, see equation (2.6), the residual of an arbitrary Ritz pair (�, x)

generated according to equation (2.1) is in the space spanned by [V

j

; u

j+1

].

Proof. Given an arbitrary normal vector y 2 R

j

, the Ritz pair generated by equation (2.1) has residual

r = AV

j

y � �V

j

y. According to the assumption, AV

j

= V

j

H

j

+ �u

j+1

e

T

j

, the following is true,

AV

j

2 spanfV

j

; u

j+1

g:

Thus r is a linear combination of vectors in [V

j

; u

j+1

], i.e., r 2 spanfV

j

; u

j+1

g. 2

The implication of the above lemma is that if V

j

is an Arnoldi basis, any vector of the form AV

j

y��V

j

y

can be used at step 4 of algorithm 2.6, the new basis is another Arnoldi basis, and v

j+1

= u

j+1

. The above

lemma can be applied to both the Davidson method and the harmonic Davidson method because y can be

any unit vector.

It is fairly straightforward to extend the above lemma to a block version of the Arnoldi basis. We extend

equation (2.6) to the block form as follows

AV

j

= V

j

H

j

+ U [e

j�b+1

; : : : ; e

j

]

T

B; (2.9)

where H

j

is a b-Hessenberg matrix that has b non-zero subdiagonal elements, B 2 R

b�b

, U 2 R

n�b

and e

i

is the ith column of the identity matrix. The above lemma can be trivially extended as follows.

Lemma 2.2 Assume V

j

is a block Arnoldi basis, see equation (2.9), the residual of an arbitrary Ritz pair

(�, x) is in the space spanned by [V

j

; U ].

Lemma 2.3 If at any step j, the basis V

j

created by the orthogonalized Arnoldi method, the modi�ed Arnoldi

method, the Davidson method or the harmonic Davidson method span the same space as the basis of the

Arnoldi method, and [V

j

; s

1

; : : : ; s

b

] is not degenerate, then the basis V

j+b

will also span the same space.

Proof. It is clear that V

j+b

produced by the Arnoldi method, the orthogonalized Arnoldi method and

the modi�ed Arnoldi method will be in the span of [V

j

; U ] if they are not degenerate. All the residual vectors

of the Davidson method and the harmonic Davidson method are in span[V

j

; U ]. If the original basis and b

residual vectors do not form a degenerate set, they must form a basis of span[V

j

; U ]. In conclusion, the bases

produced by the �ve methods span the same space. 2

If the number of initial guesses is the same as the block size b, than the basis satis�es equation (2.9). If

the same initial guesses are used in the �ve methods mentioned, the bases produced by them should span

the same space till the end of algorithm 2.6. If these bases are given to the same projection procedure to �nd

the same eigenpairs, the resulting Ritz vectors should be identical for all methods. If the new set of vectors

after restart also satis�es equation (2.9), then the �ve methods will be identical through-out. For symmetric

matrices, if we choose to save more than b Ritz vectors to restart, the new vectors satisfying equation (2.9).

The results stated here combine and generalize some of the previous equivalence theorems. Previously,

the restarted Arnoldi method with arbitrary b

0

was shown to be mathematically equivalent to the implicitly

restarted Arnoldi method [83], and the thick restarted Davidson method was shown to be equivalent to

the implicitly restarted Arnoldi method in [134]. Combining these two, we can conclude that the restarted

Arnoldi method is equivalent to the restarted Davidson method if they start with one initial vector at the

beginning, restart with the same Ritz vectors, and add only one vector to their bases at each step. Because

the strong connection between the implicitly restarted Arnoldi (IRA) method and the thick restarted Arnoldi

for symmetric matrices, the above lemmas also extend to IRA method.
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method extra FLOP

Arnoldi -

Modi�ed Arnoldi 2n

Orthogonalized Arnoldi 2jn

Davidson 4jn

Harmonic Davidson 6jn

Table 2.1: Complexity of the methods compared to the Arnoldi method.

2.5 Practical di�erences

We have implemented the �ve schemes for �nding eigenvalues and eigenvectors using the frame work of

algorithm 2.3. In our implementation, we save both V and W in memory to avoid extra matrix-vector

multiplications when computing residual vectors. Comparing the �ve methods, the Arnoldi method is the

cheapest per step. Table 2.1 shows how many more oating-point operations used by other four methods

compared to the Arnoldi method. The comparison is for the step that extends V

j

to V

j+1

. Because the

orthogonalization procedure, step 1 of algorithm 2.6, is implemented as an iterative procedure [29], the

actual number of oating-point operations of the orthogonalization step depends on the quality of the input

vectors, primarily how close is the new vector to be a linear combination of the existing ones. Therefore

the actual di�erences may di�er from what is shown in the table. More details on the orthogonalization

procedure will be discussed later. Without preconditioning, the �ve methods discussed are equivalent to

each other in theory. Here we have just shown two di�erences among them. First, they have di�erent

complexities. Second, quality of the basis generated by them are di�erent. When preconditioned, they are

even more di�erent.

For convenience of discussion, let's assume b

1

= 1 in algorithm 2.6, the vector s generate at this step can

always be expressed as

s =

j

X

i=1

�

i

v

i

+ �u: (2.10)

where �

i

= s

T

v

i

, � = ks �

P

�

i

v

i

k, u = (s �

P

�

i

v

i

)=�. If � happens to be zero, u can be any normal

vector orthogonal to V

j

. Since the orthogonalization step will normalize the vector, the ratio of � compared

to k(�

i

)k is an important quantity. Because the residual of the Rayleigh-Ritz procedure is orthogonal to the

basis V

j

, this ratio could be considered as in�nite for the Davidson method. In theory the orthogonalized

Arnoldi should also have in�nite ratio for �=k(�

i

)k. But this ratio is reduced to �nite number if Av

j

is close

to be linearly dependent on V

j

, because equation (2.7) is not enough to generate a vector that is exactly

orthogonal to V

j

. The other three methods, the Arnoldi method the modi�ed Arnoldi method and the

harmonic Davidson method could have much smaller ratios. This indicates that even if u in equation (2.10)

is the same for all �ve methods, M

�1

s could be very di�erent. Most often the vector u is not the same

either because the bases do not satisfy the Arnoldi recurrence, or because round-o� errors have accumulated

to be signi�cant. Due to these di�erences, even if V

j

is the same for all �ve methods mentioned above, they

will most likely produce di�erent v

j+1

. Usually the Davidson method uses a varying preconditioner such as

M = diag(A)� �I where � is updated at every step, which makes it even harder to quantify the di�erences

between the methods.

Even if the preconditioner inverts (A� �I) exactly, unless V

j

is an invariant subspace of A, for di�erent

value of �=k(�

i

)k, the result of preconditioning is di�erent. More importantly, the new basis built by the �ve

di�erent methods will be di�erent. This means that even with a perfect preconditioner, they will produce

di�erent results.

The most e�ective way of showing how the methods behavior is showing numerical examples. A series

of numerical results will be shown in the remaining of this section. The test matrices used are non-diagonal

symmetric matrices. To reduce bias in the data, we have used all symmetric matrices in the collection.

They came from a variety of sources, such as structure analysis, etc., see table 2.2 and 2.3. Most of the

matrices are from real applications. The performance of the eigenvalue solvers on these problems will give
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NAME N NNZ comment

1138BUS 1138 2596 admittance matrix, power system

494BUS 494 1080 admittance matrix, power system

662BUS 662 1568 admittance matrix, power system

685BUS 685 1967 admittance matrix, power system

GR3030 900 4322 nine point matrix on a 30 X 30 grid

LUNDA 147 1298 A of Lund eigenvalue problem

LUNDB 147 1294 B of Lund eigenvalue problem

NOS1 237 627 biharmonic operator on beam

NOS2 957 2547 biharmonic operator on beam

NOS3 960 8402 biharmonic operator on plate

NOS4 100 347 beam structure

NOS5 468 2820 building structure

NOS6 675 1965 Poisson's equation in L shape, mixed BC

NOS7 729 2673 Poisson's equation in unit cube

PLAT1919 1919 17159 ocean model

PLAT362 362 3074 Atlantic ocean model

ZENIOS 2873 15032 air-tra�c control model

Table 2.2: Non-diagonal symmetric matrices from HB collection (Part I).

us some indications as how well they will perform in general. The maximum basis size is chosen to be

25, a total of about 50 vectors are stored in memory. The results show in the table are from �nding 5

smallest eigenvalues and the corresponding eigenvectors. In the application we are interested in, many more

eigenpairs are needed. Here we are only performing a small test on the eigenvalue solvers. For simplicity

the initial vector to build the �rst basis is always a vector of all ones, [1; 1; : : : ; 1]

T

. At restart, 12 Ritz

vectors corresponding to the smallest Ritz values are saved. There are 45 non-diagonal symmetric matrices

in the Harwell-Boeing collection. To save space, only the cases where �ve eigenvalues were found within

5000 matrix-vector multiplications. The entry with a dash (\-") indicates that the eigenvalue solver did not

�nd 5 eigenvalues within 5000 matrix-vector multiplications.

Most of the test matrices are very sparse, typically having only about 5 to 10 nonzero entries per row.

This about results were obtained on a SPARC-10 workstation runs at about 50MHz. All the Harwell-Boeing

matrices shown in the table can �t into the main memory of the computer, which is 64 Megabytes. Because

the typical matrix-vector operation is less expensive than an average orthogonalization in terms of oating-

point operations, the complexity of the whole eigenvalue solver is dominated by the orthogonalization and

projection steps. Table 2.1 clearly shows that the Arnoldi method is cheaper than others. When the number

of the matrix-vector multiplication is about the same, the Arnoldi method should use the least amount of

time.

The �rst set of test results is shown in table 2.4. We have run the �ve methods on all 45 test problems.

Only four methods are shown in the table because the number of matrix-vector multiplications (MATVEC)

used by the modi�ed Arnoldi method is exactly the same as that of the Arnoldi method. For each of the

four methods shown, two columns are displayed for each one of them. The one headed by \MATVEC" is the

number of matrix-vector multiplications used and the one headed with \time" shows the total execution time

in seconds. From this table, we see that the Arnoldi method does use less time if about the same number of

matrix-vector multiplications is used. Comparing the number of matrix-vector multiplications used by the

di�erent methods, the Davidson method clearly uses less than any other.

Generally, we can observe two trends from the data in table 2.4,

� The Davidson method generally use less iterations to converge than others;

� The Arnoldi method uses less time than others when same number of matrix-vector multiplication is

used.
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NAME N NNZ comment

BCSSTK01 48 224 sti�ness matrix

BCSSTK02 66 2211 sti�ness matrix, small oil rig

BCSSTK03 112 376 sti�ness matrix

BCSSTK04 132 1890 sti�ness matrix, oil rig

BCSSTK05 153 1288 sti�ness matrix, transmission tower

BCSSTK06 420 4140 sti�ness matrix

BCSSTK07 420 4140 sti�ness matrix

BCSSTK08 1074 7017 sti�ness matrix, frame building (TV studio)

BCSSTK09 1083 9760 sti�ness matrix, square plate clamped

BCSSTK10 1086 11578 sti�ness matrix, buckling of hot washer

BCSSTK11 1473 17857 sti�ness matrix, ore car (lumped masses)

BCSSTK12 1473 17857 sti�ness matrix, ore car (consistent masses)

BCSSTK13 2003 42943 sti�ness matrix, uid ow

BCSSTK14 1806 32630 sti�ness matrix, roof of omni coliseum, Atlanta

BCSSTK15 3948 60882 sti�ness matrix, module of an o�shore platform

BCSSTK16 4884 147631 sti�ness matrix, corp. of engineers dam

BCSSTK17 10974 219812 sti�ness matrix, elevated pressure vessel

BCSSTK18 11948 80519 sti�ness matrix, R.E.Ginna nuclear power station

BCSSTK19 817 3835 sti�ness matrix, part of a suspension bridge

BCSSTK20 485 1810 sti�ness matrix, frame within a suspension bridge

BCSSTK21 3600 15100 sti�ness matrix, clamped square plate

BCSSTK22 138 417 sti�ness matrix, textile loom frame

BCSSTK23 3134 24156 sti�ness matrix, 3D building

BCSSTK24 3562 81736 sti�ness matrix, winter sports arena

BCSSTK25 15439 133840 sti�ness matrix, 76 story skyscraper

BCSSTK26 1922 16129 sti�ness matrix, reactor containment oor

BCSSTK27 1224 28675 sti�ness matrix buckling problem

BCSSTK28 4410 111717 solid element model (MSC NASTRAN)

BCSSTM07 420 3836 mass matrix

BCSSTM10 1086 11589 mass matrix, buckling of hot washer

BCSSTM12 1473 10566 mass matrix, ore car (consistent masses)

BCSSTM13 2003 11973 mass matrix, uid ow generalized eigenvalues

BCSSTM27 1224 28675 mass matrix, buckling problem

Table 2.3: Non-diagonal symmetric matrices from HB collection (Part II).

The orthogonalized Arnoldi method was built as the hybrid of the Arnoldi method and the Davidson

method. In a couple of cases, it used less matrix-vector multiplications than all others, e.g., 662BUS and

BCSSTK22. However the advantage of this method is not signi�cant. The harmonic Davidson method is

too expensive per step to be competitive in this experiment.

Table 2.5 shows the results of using diagonal preconditioner, M = diag(A) � �I . In this table, all �ve

methods are shown, but only the time for the Davidson method is shown. The value � in the preconditioner is

the latest available eigenvalue approximation. In the Davidson method and the harmonic Davidson method

the eigenvalue is updated as every step. In the Arnoldi method and the orthogonalized Arnoldi method, it

is only updated after the bases are full. We have made two modi�cations to it. Here is how M is de�ned in

our program,

m

ii

=

�

ja

ii

� �j; ja

ii

� �j > �

�; ja

ii

� �j � �

(2.11)

Table 2.5 only shows the 28 cases where all �ve wanted eigenpairs were found by one of the methods.

The Davidson method solve more problems than any other method in this case. Even in the cases where

other method also found all 5 eigenpairs, it always uses less iteration and less time.
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Arnoldi Orthogonalized Davidson Harmonic

MATVEC time MATVEC time MATVEC time MATVEC time

662BUS 3070 44.0 2876 44.6 2990 75.9 3591 127.5

685BUS 1615 24.8 1628 25.9 1591 41.0 1627 57.1

BCSSTK01 400 0.9 376 0.9 359 3.2 418 5.7

BCSSTK02 182 0.6 169 0.6 154 1.6 194 3.0

BCSSTK04 4648 17.9 4975 21.0 3908 42.6 >5000 -

BCSSTK05 612 2.6 612 2.9 605 7.4 612 11.4

BCSSTK09 730 18.5 679 19.7 336 14.4 660 39.5

BCSSTK16 794 144.0 718 147.1 718 177.5 848 252.9

BCSSTK22 2173 8.2 2083 8.7 2146 24.3 2290 40.1

BCSSTM10 183 4.6 183 5.2 183 7.9 183 10.2

BCSSTM27 2629 99.7 2526 105.2 2425 141.3 2799 208.3

GR3030 286 5.4 157 3.6 56 1.8 211 10.4

LUNDA 1406 5.8 1419 6.3 1305 14.7 1315 24.5

LUNDB 2290 9.2 2200 9.9 2190 25.4 2252 41.0

NOS3 441 9.0 380 9.4 364 14.0 380 19.9

NOS4 158 0.5 146 0.5 125 1.3 146 2.3

NOS5 1171 11.7 1133 13.0 1133 23.3 1133 33.1

ZENIOS 118 8.7 132 11.7 98 9.8 206 26.6

Table 2.4: Solving non-diagonal systems without preconditioning.

Arnoldi Orthogonalized Modi�ed Davidson Harmonic

MATVEC MATVEC MATVEC MATVEC time MATVEC

494BUS >5000 >5000 >5000 3310 72.3 >5000

662BUS >5000 >5000 >5000 872 23.5 >5000

685BUS >5000 >5000 >5000 773 21.3 >5000

BCSSTK01 2864 653 2566 123 1.1 965

BCSSTK02 2586 1303 2638 192 2.0 925

BCSSTK03 >5000 >5000 >5000 1804 20.1 >5000

BCSSTK04 >5000 3681 >5000 185 2.2 2274

BCSSTK05 >5000 >5000 >5000 414 5.4 >5000

BCSSTK06 >5000 >5000 >5000 1926 37.7 >5000

BCSSTK07 >5000 >5000 >5000 1926 37.6 >5000

BCSSTK08 >5000 >5000 >5000 919 39.6 >5000

BCSSTK09 4369 >5000 4350 780 35.1 2655

BCSSTK15 >5000 >5000 >5000 4644 862.7 >5000

BCSSTK16 >5000 >5000 >5000 808 206.4 3421

BCSSTK21 >5000 >5000 >5000 1514 233.2 >5000

BCSSTM07 >5000 >5000 >5000 357 7.1 >5000

BCSSTM10 1849 1862 4682 258 11.6 3513

BCSSTM13 >5000 >5000 >5000 313 25.1 2342

BCSSTM27 >5000 >5000 >5000 2587 152.5 >5000

GR3030 259 223 260 56 1.9 205

LUNDA >5000 1940 >5000 225 2.7 1933

LUNDB >5000 4007 >5000 356 4.3 >5000

NOS3 2236 4915 2315 612 24.5 2173

NOS4 1766 1290 1751 216 2.5 1602

NOS5 4768 >5000 4976 801 17.0 3049

NOS6 >5000 >5000 >5000 2504 68.1 >5000

NOS7 >5000 >5000 >5000 182 5.3 >5000

ZENIOS 130 120 131 85 9.1 131

Table 2.5: Solving the non-diagonal systems with diagonal preconditioning.
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Arnoldi Orthogonalized

MATVEC time MATVEC time

494BUS >5000 - 118 66.7

BCSSTK01 3045 28.3 705 6.5

BCSSTK02 2612 26.9 1355 14.3

BCSSTK04 >5000 - 3864 44.3

BCSSTK07 >5000 - 198 13.1

BCSSTK09 4756 169.2 >5000 -

BCSSTM07 >5000 - 133 15.3

BCSSTM10 1810 66.1 1927 76.4

GR3030 195 5.0 235 7.4

LUNDA >5000 - 1979 23.3

LUNDB >5000 - 4084 48.5

NOS3 2262 71.1 4942 170.4

NOS4 1868 20.5 1303 15.1

NOS6 >5000 - 1680 41.9

ZENIOS 158 13.0 119 11.6

Table 2.6: Solving non-diagonal systems with diagonal preconditioning using better shifts.

Comparing table 2.4 and 2.5, we see that the Davidson method is the only method bene�ted from

the diagonal preconditioner. All others converged on less problems with this preconditioner than without

preconditioning.

We have observed some characteristics among the �ve eigenvalue routines when preconditioner is used.

Now we will try to satisfy ourselves that these characteristics are not due to some peculiarity of the diagonal

preconditioner used. First thing we noticed is that we did not update the shift to the preconditioner in the

Arnoldi method and the orthogonalized Arnoldi method, we have modi�ed them to compute the eigenvalue

approximation at every step. Table 2.6 contains the results of this experiment. The orthogonalized Arnoldi

method can now converge on 14 systems rather this 10 in table 2.5. However this is still only half of the

number of systems solved by the Davidson method. More about shifting strategy will be discussed later,

here we note that changing shifting strategy does not seem to make the orthogonalized Arnoldi comparable

with the Davidson method.

Table 2.7 shows the results of using SOR as preconditioner to �nd the smallest eigenvalues of the Harwell-

Boeing matrices. More systems reached convergence with SOR preconditioner than with the diagonal pre-

conditioner. A total of 35 systems reached convergence in this case. However, again we see the same trend

that is present in the diagonal preconditioning case, that is, the method that is most successful in taking

advantage of the SOR preconditioner is the Davidson method. The Arnoldi method is lagging behind others

in number of systems converged.

Both the diagonal scaling and SOR preconditioner are often considered weak preconditioners for linear

systems. Next we use two incomplete LU factorizations preconditioners. They are often regarded as more

robust for linear systems. The results is shown in tables 2.8 and 2.9. The �rst ILU preconditioner is

ILU0 which preserves the sparsity pattern of the matrix in the LU factor [48, 76, 115]. The second ILU

preconditioner is ILUTP which is an incomplete LU factorization with column pivoting, threshold based

dropping and �ll based dropping strategies [118]. Because the matrix (A � �I) is often inde�nite, ILUTP

is more stable than ILUT. Both ILU0 and ILUTP are from SPARSKIT [115]. The ILUTP preconditioner

has three parameters, the level of �ll, the drop tolerance and the pivoting threshold. In our experiment,

the drop tolerance is 10

�4

and pivoting threshold is 0.1, the level of �ll is set to a value such that each row

of L and U factor could have one more non-zero element than the average number of nonzero elements in

the lower and upper triangular part of the original matrix. Our intend is to �nd out that given the same

preconditioner which one of the �ve methods performs better, so we simply allowed the program to perform

a new factorization every time a di�erent shift is generated. This is not the most time-e�cient way of using

these two preconditioners, however it does not a�ect our ability to compare how the �ve di�erent eigenvalue

solvers behave. As before, we see that the Davidson method reaches converge on more problems than others.
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Arnoldi Orthogonalized Modi�ed Davidson Harmonic

MATVEC MATVEC MATVEC MATVEC time MATVEC

1138BUS >5000 >5000 >5000 4241 240.8 >5000

494BUS >5000 >5000 >5000 4413 126.3 >5000

662BUS >5000 >5000 >5000 393 13.6 3785

685BUS >5000 >5000 >5000 353 12.8 3784

BCSSTK01 >5000 471 >5000 61 0.5 913

BCSSTK02 3838 796 3513 93 1.6 1002

BCSSTK03 >5000 >5000 >5000 393 4.6 >5000

BCSSTK04 >5000 1082 >5000 86 1.7 1291

BCSSTK05 >5000 2330 >5000 145 2.2 2037

BCSSTK06 >5000 >5000 >5000 392 14.2 >5000

BCSSTK07 >5000 >5000 >5000 392 14.1 >5000

BCSSTK08 >5000 >5000 >5000 320 28.1 >5000

BCSSTK09 >5000 >5000 >5000 390 26.5 2733

BCSSTK10 >5000 >5000 >5000 1482 99.8 >5000

BCSSTK14 >5000 >5000 >5000 1808 283.1 >5000

BCSSTK15 >5000 >5000 >5000 846 363.5 >5000

BCSSTK16 >5000 >5000 >5000 234 251.4 3111

BCSSTK21 >5000 >5000 >5000 626 119.5 >5000

BCSSTK22 >5000 >5000 >5000 >5000 - 2057

BCSSTK27 >5000 >5000 >5000 1502 143.3 >5000

BCSSTM07 >5000 2369 >5000 159 4.7 3344

BCSSTM10 2161 913 >5000 95 6.6 >5000

BCSSTM12 >5000 >5000 >5000 2910 237.0 >5000

BCSSTM13 >5000 2980 >5000 113 15.6 2640

BCSSTM27 >5000 >5000 >5000 481 48.3 >5000

GR3030 1224 575 1095 113 5.5 662

LUNDA >5000 757 >5000 104 1.7 1251

LUNDB >5000 1381 >5000 115 1.7 1147

NOS1 >5000 >5000 >5000 4316 66.8 >5000

NOS3 >5000 2070 >5000 188 12.9 2928

NOS4 2629 809 2811 94 1.0 551

NOS5 4990 2901 4926 310 9.2 1927

NOS6 >5000 >5000 >5000 354 12.4 >5000

NOS7 >5000 1173 >5000 63 2.8 3946

ZENIOS 1386 1092 3899 104 13.4 1142

Table 2.7: Solving non-diagonal systems with SOR preconditioning.

Even on the problems where more than one method reached convergence, the Davidson method is often the

one that takes the least amount of time and the least number of matrix-vector multiplications.

Table 2.10 sums up the total number of eigenvalue problems converged under each method with or

without preconditioning. Without preconditioning, the �ve methods converged on the same problems. With

preconditioning, the Davidson method converges on more problems than any other method. Table 2.11 counts

the number of cases where the method converged in the least amount of time. In the unpreconditioned case,

the Arnoldi method uses the least amount of time to reach convergence on this set of problems. While in

the preconditioned cases, the Davidson method invariably reaches convergence faster than others.

All preconditioners used up to now are imperfect, i.e., they solve an approximate form of (A� �I)z = s.

What if we have this equation solved exactly? In the linear system case, if the preconditioner is exactly the

matrix itself, the linear system is solved in one step. In the eigen-system case, this is not true. We have

observed some performance di�erence between the �ve eigenvalue solvers, the particular question we would

like to �nd an answer to is \will the eigenvalue solvers become identical if the preconditioner is exact?". To

answer this, we decide to apply the diagonal preconditioner on a series of diagonal matrices. The diagonal

matrices we use are from the Harwell-Boeing collection, see table 2.12. For our purpose here, the important

24



Arnoldi Orthogonalized Modi�ed Davidson Harmonic

MATVEC MATVEC MATVEC MATVEC time MATVEC

1138BUS >5000 >5000 >5000 798 37.3 >5000

494BUS >5000 >5000 >5000 624 14.6 >5000

662BUS >5000 >5000 >5000 271 8.1 2387

685BUS >5000 >5000 >5000 1355 73.6 >5000

BCSSTK01 >5000 >5000 >5000 65 0.7 645

BCSSTK02 25 106 159 19 1.1 93

BCSSTK03 >5000 >5000 >5000 106 1.3 3018

BCSSTK04 >5000 >5000 >5000 93 2.2 1277

BCSSTK05 >5000 1420 >5000 107 1.9 2447

BCSSTK06 >5000 >5000 >5000 164 7.4 4056

BCSSTK07 >5000 >5000 >5000 164 8.1 4056

BCSSTK08 >5000 3083 >5000 134 18.0 >5000

BCSSTK20 >5000 >5000 >5000 >5000 - 4199

BCSSTK22 >5000 >5000 >5000 >5000 - 909

BCSSTK23 >5000 >5000 >5000 >5000 - 713

BCSSTK24 >5000 >5000 >5000 1682 3367.7 >5000

BCSSTK26 >5000 >5000 >5000 4318 551.2 >5000

BCSSTK27 >5000 >5000 >5000 110 20.7 >5000

BCSSTM07 >5000 >5000 >5000 97 3.0 1531

BCSSTM10 2317 2720 >5000 99 7.5 2317

BCSSTM12 >5000 4045 >5000 110 12.7 >5000

BCSSTM13 >5000 2772 >5000 49 8.2 698

BCSSTM27 >5000 >5000 >5000 93 14.0 >5000

GR3030 2837 653 2200 89 3.8 800

LUNDA >5000 731 >5000 64 1.2 1035

LUNDB >5000 >5000 >5000 75 1.3 888

NOS3 >5000 1771 >5000 130 9.7 1771

NOS4 3864 106 3656 3864 46.7 1212

NOS5 >5000 2135 >5000 140 4.4 2135

NOS6 >5000 692 >5000 320 10.0 >5000

NOS7 >5000 >5000 >5000 58 2.5 4510

ZENIOS 587 726 >5000 148 22.6 713

Table 2.8: Solving non-diagonal systems with ILU0 preconditioning.

thing is that they are diagonal matrices. Table 2.13 shows the results of unpreconditioned case and table 2.14

shows the results of preconditioned case. In this test, the preconditioner improved the performance of every

method, however the Davidson method still uses less matrix-vector multiplications and/or time than other

four methods in most cases.

Since the Arnoldi method we implement is always lagging behind the Davidson method, it is nature to

suspect that our implementation might be awed in some way. To show that we have made a reasonable sound

implementation, we compared our results against a few public domain eigenvalue packages. The package

that is closest to our implementation of the Arnoldi method is the ARPACK [129]. In table 2.15 we show the

number of matrix-vector multiplication and time used to reach convergence by both IRA(25) and IRA(50).

Note that the basis size we use in all our tests is 25 which is the same as IRA(25). However we need 50 vectors

to save both V and W , thus the total workspace size is very close to IRA(50). Table 2.15 only shows the

matrices who reached convergence on all 5 eigenvalues within 5000 matrix-vector multiplications. Compared

with table 2.4, the Arnoldi method we used converged on slightly more problems, and it is very competitive

in both the number of matrix-vector multiplications and the time used. We know that the �ve methods will

behave di�erently with perfect preconditioner. This tests shows that the Davidson preconditioning scheme

is better than others with perfect preconditioner too.
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Arnoldi Orthogonalized Modi�ed Davidson Harmonic

MATVEC MATVEC MATVEC MATVEC time MATVEC

1138BUS >5000 >5000 >5000 850 50.9 >5000

494BUS >5000 >5000 >5000 1090 31.8 >5000

662BUS >5000 >5000 >5000 326 11.8 >5000

685BUS >5000 >5000 >5000 282 11.0 >5000

BCSSTK01 >5000 796 >5000 73 0.7 3925

BCSSTK02 523 237 3786 25 0.9 >5000

BCSSTK04 >5000 1069 >5000 79 3.0 4993

BCSSTK05 >5000 1134 >5000 94 2.0 >5000

BCSSTK08 >5000 >5000 >5000 554 75.5 >5000

BCSSTK09 >5000 2109 >5000 161 17.8 >5000

BCSSTK14 >5000 >5000 >5000 204 202.2 >5000

BCSSTK15 >5000 >5000 >5000 1499 3665.4 >5000

BCSSTK16 >5000 4293 >5000 102 507.5 1550

BCSSTK21 >5000 >5000 >5000 791 237.1 >5000

BCSSTK22 >5000 >5000 >5000 117 1.6 2641

BCSSTM07 >5000 3214 >5000 77 3.9 >5000

BCSSTM10 744 718 >5000 97 15.8 >5000

BCSSTM13 >5000 >5000 >5000 156 26.4 >5000

BCSSTM27 >5000 >5000 >5000 59 28.9 >5000

GR3030 2922 822 2570 137 7.4 >5000

LUNDA >5000 952 >5000 88 2.3 >5000

LUNDB >5000 >5000 >5000 82 1.7 >5000

NOS1 >5000 3474 >5000 5003 86.7 >5000

NOS3 >5000 1160 >5000 113 12.7 >5000

NOS4 >5000 731 >5000 85 1.0 >5000

NOS5 >5000 1147 >5000 94 5.2 >5000

NOS6 >5000 926 >5000 918 38.7 >5000

NOS7 >5000 1082 >5000 63 3.9 >5000

ZENIOS 942 1285 >5000 141 22.2 2295

Table 2.9: Solving non-diagonal systems with ILUTP preconditioning.

Orthogonalized Modi�ed Harmonic

Arnoldi Arnoldi Arnoldi Davidson Davidson

(NONE) 18 18 18 18 17

diagonal 9 10 9 28 13

SOR 6 15 5 34 19

ILU0 5 13 3 29 22

ILUTP 4 15 2 27 19

Table 2.10: Number of eigenvalue problems solved by each method.

Orthogonalized Modi�ed Harmonic

Arnoldi Arnoldi Arnoldi Davidson Davidson

(NONE) 16 2 - 0 0

diagonal 0 0 0 28 0

SOR 0 0 0 34 0

ILU0 1 1 0 27 0

ILUTP 0 2 0 26 0

Table 2.11: Number of cases where the method reached convergence in the least amount of time.
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NAME N comment

BCSSTM01 48 mass matrix

BCSSTM02 66 mass matrix, small oil rig

BCSSTM03 112 mass matrix

BCSSTM04 132 mass matrix, oil rig

BCSSTM05 153 mass matrix, transmission tower

BCSSTM06 420 mass matrix

BCSSTM08 1074 mass matrix, frame building (TV studio)

BCSSTM09 1083 mass matrix, square plate clamped

BCSSTM11 1473 mass matrix, ORE car (lumped masses)

BCSSTM19 817 mass matrix, part of a suspension bridge

BCSSTM20 485 mass matrix, frame within a suspension bridge

BCSSTM21 3600 mass matrix, clamped square plate

BCSSTM22 138 mass matrix, textile loom frame

BCSSTM23 3134 mass matrix, 3D building

BCSSTM24 3562 mass matrix, winter sports arena

BCSSTM25 15439 mass matrix, 76 story skyscraper

BCSSTM26 1922 mass matrix, reactor containment oor

Table 2.12: Diagonal RSA matrices from HB collection.

Arnoldi Orthogonalized Davidson Harmonic

MATVEC time MATVEC time MATVEC time MATVEC time

BCSSTM01 25 0.08 25 0.08 11 0.07 25 0.24

BCSSTM02 25 0.08 25 0.08 17 0.12 25 0.28

BCSSTM03 95 0.34 81 0.30 72 0.74 82 1.23

BCSSTM04 25 0.11 81 0.31 36 0.32 25 0.32

BCSSTM05 25 0.13 45 0.19 25 0.27 25 0.34

BCSSTM06 911 9.02 1391 14.07 713 12.82 1231 31.86

BCSSTM08 1171 31.17 1374 35.26 1171 45.53 728 40.20

BCSSTM09 25 0.60 25 0.63 10 0.25 19 0.66

BCSSTM11 43 1.44 43 1.43 29 1.21 28 1.45

BCSSTM21 25 2.43 25 2.30 9 0.62 25 3.45

BCSSTM22 145 0.60 132 0.55 121 1.47 134 2.08

Table 2.13: Solving diagonal systems without preconditioning.

2.6 Summary

From comparing the Arnoldi method and the Davidson method, we observed that many eigenvalue solvers

can �t into the frame work of a generic projection eigenvalue algorithm, see algorithm 2.3. From this

generic algorithm we describe three variations. The �ve methods are mathematically equivalent to each

other without precondition. If no preconditioner is available, the most e�cient method among the �ve is

the Arnoldi method because it is cheaper than others per iteration. However, compared to others, the bases

it created is more likely to loss orthogonality which could lead to more matrix-vector multiplications being

used to be compute the same solution. Even though it might take a few extra steps, if the matrix-vector

multiplication is relatively cheap, the Arnoldi method may still take less time than others.

When a preconditioner is applied, the �ve methods behave quite di�erently. A good preconditioner

can enhance the performance of all �ve methods we tested. However, in the tests we have conducted, the

Davidson method can take advantage of preconditioning much better than other four methods. This trend

is consistent in all preconditioners we have tried, diagonal scaling, SOR, ILU0, and ILUTP. Even when the

preconditioner is exactly (A � �I), the �ve methods still produce di�erent bases. As we have seen in the

case of diagonal matrices with diagonal preconditioner, the Davidson method can still outperform the others
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Arnoldi Orthogonalized Modi�ed Davidson Harmonic

MATVEC MATVEC MATVEC MATVEC time MATVEC

BCSSTM01 25 25 25 9 0.06 25

BCSSTM02 25 46 25 20 0.12 53

BCSSTM03 38 95 55 20 0.15 42

BCSSTM04 25 57 25 27 0.22 25

BCSSTM05 25 25 50 14 0.11 25

BCSSTM06 107 160 54 22 0.33 211

BCSSTM08 171 172 54 24 0.79 44

BCSSTM09 38 25 25 8 0.21 25

BCSSTM11 40 56 1607 20 0.84 38

BCSSTM19 120 172 55 25 0.63 1068

BCSSTM20 133 172 25 28 0.49 719

BCSSTM21 25 38 25 12 0.86 25

BCSSTM22 146 159 54 23 0.19 122

BCSSTM23 120 133 55 24 2.37 740

BCSSTM24 66 77 25 28 3.09 501

BCSSTM25 145 118 >5000 31 16.96 >5000

BCSSTM26 159 198 81 24 1.38 956

Table 2.14: Solving diagonal systems with diagonal scaling.

IRA(25) IRA(50)

Name MATVEC time(sec) MATVEC time (sec)

662BUS 3729 46.8 2533 58.6

685BUS 2327 31.9 1379 33.6

BCSSTK02 233 1.1 179 1.1

BCSSTK05 801 3.5 665 4.5

BCSSTK09 1028 27.3 971 40.5

BCSSTK16 1601 352.1 1183 333.7

BCSSTK22 >5000 - 1754 10.2

BCSSTM10 329 9.5 314 13.6

BCSSTM27 3665 159.3 2307 138.7

GR3030 274 5.6 263 8.6

LUNDA 4285 17.4 2005 12.8

LUNDB >5000 - 4342 27.4

NOS3 735 17.2 703 25.9

NOS4 233 0.9 182 1.1

NOS5 2879 28.8 1875 30.0

ZENIOS 82 6.0 94 9.9

Table 2.15: Solving the non-diagonal systems using ARPACK.

with exact preconditioners.

Through this study we have shown that preconditioning the projection methods for eigenvalue problems

is an e�ective way of improving the performance of the methods. The tests with diagonal matrices showed

that if a good preconditioner is available, the performance of all �ve methods can be signi�cantly improved.

However, even if with a week preconditioner, such as the diagonal scaling or SOR, the Davidson method

can reach convergence on more problems. On those problem that can be solved without preconditioning,

the Davidson method with preconditioning can often reduce the time and the number of matrix-vector

multiplications used to compute the solutions.
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Chapter 3

Preconditioning Schemes

From study of the �ve preconditioned projection methods for eigenvalue problems in the previous chapter,

we see that preconditioning can signi�cantly help reduce the number of matrix-vector multiplication and

time of solving an eigenvalue problem. The Davidson method is especially e�ective in taking advantage of

preconditioner. It is fairly simple to implement and very e�ective in many cases and works well with simple

preconditioners. In many applications where the Davidson method is used, when a simple preconditioner is

not su�cient, it is often possible to construct an e�ective preconditioner based on the characteristics of the

problem. However there are also cases where aggressive preconditioners do not work well with the Davidson

method [125, 126]. This and other issues discussed in section 3.1 have generated a great deal of interest in

seeking new preconditioning schemes for eigenvalue algorithms. The Davidson preconditioning scheme can

be viewed as an inexact Newton method for eigenvalue problems. In this chapter we extend on this theme

and develop a number of preconditioning schemes that approximate Newton-type algorithms for eigenvalue

problems. Similar to the Rayleigh Quotient Iteration (RQI), these Newton methods converge cubically to

a simple eigenvalue of a symmetric matrix. In addition to their high convergence rate, the preconditioning

schemes developed from them can avoid some of serious di�culties in the Davidson preconditioning scheme.

Section 3.1 of this chapter reviews the current state of the Davidson preconditioning, including its connec-

tion to Newton method and its weaknesses. Section 3.2 describes a number of Newton-type recurrences for

eigenvalue problems and their relation to the Rayleigh Quotient Iteration. Section 3.3 introduces strategies

of using these Newton-type methods as preconditioners and practical issues related to their implementations.

Section 3.4 present a few numerical examples. A short summary is given in section 3.5.

3.1 Davidson preconditioning

When Davidson described his method in [30], he did not use the word preconditioning. Later on, many

researchers noticed the resemblance between the technique used by Davidson and preconditioning techniques

for solving linear systems [31, 80]. The diagonal scaling step of the Davidson method is call preconditioning.

Since the diagonal scaling can be regarded as an approximation to (A��I)

�1

. We refer to any technique that

approximates (A��I)

�1

as a Davidson preconditioning scheme. Many techniques for preconditioning linear

systems are now applied to the Davidson method to improve the convergence of eigenvalues. Preconditioning

for eigenvalue problem is gradually being accepted as a practical tool. Theoretical study of this subject has

just begun [16, 71, 77, 81, 133, 155].

Preconditioning for iterative linear system solver is a well studied research topic [9, 10, 119]. In order

to speed up the convergence of an iterative procedure for linear system Ax = b, the procedure is usually

applied on one of the following three preconditioned systems instead,

M

�1

Ax = M

�1

b;

AM

�1

(Mx) = b;

M

�1

L

AM

�1

R

(M

R

x) = M

�1

L

b;
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where the �rst form is commonly referred to as left-preconditioning, the second right-preconditioning, and the

third split preconditioning. One way of viewing preconditioning is that preconditioning attempts to make

(M

�1

A), (AM

�1

) or (M

�1

L

AM

�1

R

close to the identity matrix because a linear system with the identity

matrix is trivial to solve. Since the spectrum of (M

�1

A), (AM

�1

) and (M

�1

L

AM

�1

R

can di�er from that of

A arbitrarily, preconditioning for eigenvalue problem has to take on a di�erent form. There are di�erent ways

of viewing preconditioning, for example, preconditioning to reduce condition number and preconditioning to

increase stability, however, they are not directly relevant to eigenvalue problems either.

An eigenvalue algorithm like the Lanczos method or the Davidson method can be viewed to have two

distinct components: one to build a basis and one to perform projection on the basis, see algorithm 2.3. In

this setting, preconditioning is applied to the basis generation step of the algorithm, see algorithm 2.6. As

shown in the previous chapter, the unpreconditioned Davidson method appends the current residual vector

to the basis. The Davidson preconditioning scheme applies a preconditioner to the residual vectors in an

attempt to improve the quality of the basis. The original Davidson method solves the following linear system

for preconditioning

(M � �I)z = r;

where M is the diagonal part of the matrix A, � is the approximate eigenvalue, r � (A � �I)x is the

residual and x is the approximate eigenvector. Solving this linear system is \the preconditioning step", or

simply \preconditioning". The matrix (M � �I) is called the preconditioner. The preconditioner for linear

systems approximates A. The Davidson preconditioner approximates (A � �I). Because their similarities,

any preconditioner for linear systems can also be adopted for eigen-systems [32, 77, 80]. However, using

an approximation of (A � �I) as preconditioner has the following pitfalls most of which are pitfalls of the

underlying Newton method for eigenvalue problems [36].

1. Linear dependent basis When M is very close to A, one would expect an good preconditioner

based on experiences with the linear system solvers. However the above equation suggests that z � x,

appending z to the current basis will cause the new basis to be almost linearly dependent. Usually,

this means we have to perform extra reorthogonalization to maintain the orthogonality of the basis.

If the di�erence between z and x is very small, the new basis vector generated will be dominated by

round-o� error which might impede convergence.

2. Ill-conditioned iteration matrix The matrix (A � �I) is ill-conditioned when the approximate

eigenvalue � is close to an actual eigenvalue. In [95], it was shown that the error from this ill-conditioned

system does not hurt the convergence of inverse iterations. One might be tempted to adopt the result

to the preconditioner. However, the argument used there can not be directly applied because the

preconditioner is usually solved with an iterative solver or an approximate factorization, which only

approximately solves (A � �I)z = r. In addition, a linear system with an ill-conditioned matrix is

generally harder to solve for an iterative method.

3. MisconvergenceWhen the initial Ritz value is far from the desired eigenvalue, the Davidson method

may converge to an eigenvalue that is close to the initial Ritz value rather than the desired one. There

is no practical procedure that can guarantee the Lanczos method or the Davidson method will converge

to the desired solution with or without preconditioning. However, this problem is much more serious

with preconditioning than without.

4. Inde�nite iteration matrix Usually � is inside the spectrum of A, if M is a good approximation to

A, then (M � �I) is inde�nite. An inde�nite system is harder to solve for a common preconditioner

such as an iterative linear system solver or an incomplete factorization. An inde�nite iteration matrix

can cause an iterative solver to convergence slowly. An incomplete LU factorization procedure may

fail on an inde�nite matrix for it may encounter zero pivot.

5. Complex shift When the matrix is nonsymmetric, � may be complex, the above preconditioned

linear system is complex. This could demand either added storage and/or added complexity to the

preconditioning procedure.
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Among these �ve problems, we will not encounter the 5th one because we deal with Hermitian matrices

only. We will address the other four problems with a strong emphasis on the �rst two.

There are several variations on the Davidson preconditioning scheme to overcome some of the di�culties

mentioned above. The original preconditioning scheme in the Davidson method solves (M ��I)z = r where

M is the diagonal part of A. One of the earliest modi�cations is from Olsen and colleagues which uses the

following equation for preconditioning [90]

(M � �I)z = r � �

O

x: (3.1)

This was shown to be an e�ective scheme if an appropriate �

O

is used. The original criteria for choosing �

O

was to make z orthogonal to x as this would avoid the �rst problem mentioned above. To achieve this, it is

easy to show that we must have

�

O

=

x

T

(M � �I)

�1

r

x

T

(M � �I)

�1

x

:

The idea of orthogonalizing the output of preconditioning against the Ritz vector appears to be a logical

choice for avoiding the linear dependent basis problem. The Jacobi-Davidson preconditioning schemes can be

thought as a di�erent implementation to realize this intention. In order to solve equation (3.1), it is necessary

to apply the preconditioner on both x and r which doubles the cost of preconditioning. Stathopoulos and

co-authors later modi�ed this scheme based on the correction equation

(A� (�+ �))d = �(A� (�+ �))x; (3.2)

where �

�

= �+ � and x

�

= x+d are the exact eigenvalue and the corresponding eigenvector [36, 133]. Based

on this equation, the error in �, �, is used as �

O

in equation (3.1). This provides an inexpensive alternative

to the original choice of �

O

.

For convenience of discussion, we will refer to the �rst modi�ed residual as the Olsen residual and this

later modi�cation as the Stathopoulos residual. When referring to both of them without distinction, we will

use the term modi�ed residual. In general we will write them as,

s � [A� (�+ �)I ]x; (3.3)

where the actual value of � is chosen to either make it the Olsen residual or the Stathopoulos residual. Most

often the later is used.

In equation (3.1), � is used as the shift to the preconditioner M . It is a common choice. However there

is no indication that it is an optimal choice. In [133], the authors proposed to use a biased estimate of the

eigenvalue in the above preconditioner based on the correction equation (3.2). In order to de�ne this biased

estimate, recall that the error of a Ritz pair can be bounded as follows.

� �

�

krk; krk � g;

krk

2

=g; krk < g;

(3.4)

where g is the gap between � and the closest eigenvalue [51, 133]. When seeking the smallest eigenvalues, the

biased estimate of �

�

is � = �� �, where � is the current Ritz value; when looking for the largest eigenvalues,

� = � + �. Using the de�nition of biased estimated of eigenvalue, the Stathopoulos residual can be written

as s = (A � �I)x. In many cases, this biased eigenvalue estimate is closer to the exact eigenvalue than

the Ritz value. Numerical tests have shown the biased shift to be more e�ective than �. Tests also show

that it is better in addressing the misconvergence problem in the above list. Some researchers have argued

that (M � �I) should be positive de�nite [81], using a biased shift in many cases will resulting a de�nite

preconditioner. One limitation of this biased estimate idea is that it does not extend to complex eigenvalues

easily.

After the above two modi�cations on the residual and the shift, the preconditioning equation can be

rewritten as

(M � �I)z = s; (3.5)

where � is an overestimate of eigenvalue and s is the modi�ed residual de�ned by equation (3.3). We note

that this preconditioning equation is essentially an approximate form of the correction equation. Dongarra
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and colleague have studied this subject from the perspective of improving accuracy of eigenvalues computed

[34, 35, 36]. It was pointed out in [36] that directly solving the correction equation may also face the same

di�culties we have listed above.

Recently, the Jacobi-Davidson method has attracted much attention [125]. The preconditioning step of

the Jacobi-Davidson method can be written as

(I � xx

T

)(A � �I)(I � xx

T

)z = r; (3.6)

instead of equation (3.5). The matrix on the left-hand side is singular which make it unsuitable for many

preconditioning techniques. However, a special advantage of this scheme is that when this linear system is

solved using a Krylov iterative solver the result is orthogonal to the approximate eigenvector. In spirit, this

can be regarded as a reincarnation of the Olsen scheme because it is a di�erent way of making z orthogonal

to x.

In this chapter we will only try to �nd one eigenpair. The subscripts to variables, �

i

, x

i

, and r

i

, are

used to indicate that they are values produced at ith iteration. The initial values are denoted as �

0

and x

0

.

For simplicity we will always assume that x

0

is a unit vector and �

0

is the corresponding Rayleigh quotient,

�

0

= x

T

0

Ax

0

.

3.2 Newton method for eigenvalue problems

The Newton method is a class of method that seeks a solution for f(x) = 0 by performing the following

recurrence

x

i+1

= x

i

�

�

df

dx

�

�1

x=x

i

f(x

i

):

The derivative

df

dx

is known as the Jacobian or the Jacobian matrix which is usually denoted by J . for

a continuous function f , if J is nonsingular and the starting point x

0

is close enough to the solution, this

recurrence converges quadratically. An inexact Newton method is one that solves the equation J(x

i

�x

i+1

) =

f(x

i

) inaccurately.

The Davidson preconditioner solves an Newton equation approximately. For this reason, given a good

enough preconditioner, the Davidson method could converge quadratically [26, 31, 32, 81]. From our de-

scription in the previous section, it is clear that the Davidson preconditioning scheme can be viewed as an

approximate form of the correction equation. If the exact eigenvalue �

�

is known, �nding the corresponding

eigenvector can be achieved by applying the following Newton recurrence to solve r = (A� �

�

I)x = 0,

x

i+1

= x

i

� (A� �

�

I)

�1

r

i

; (3.7)

where r

i

= (A� �

�

I)x

i

. Note that this equation is equivalent to the correction equation (3.2). Because the

Davidson preconditioning approximates the correction equation, it is an inexact form of the above Newton

recurrence.

If equation (3.7) is actually solved accurately, the solution is zero, x

i+1

= x

i

�(A��

�

I)

�1

(A��

�

I)x

i

= 0.

This is a di�erent manifestation of linear dependent basis problem described on page 30. Since �

�

is an exact

eigenvalue, the Jacobian matrix (A � �

�

I) can't be inverted, so the above Newton recurrence is not well

de�ned. To correct this, the following recursion is considered instead of equation (3.7),

x

i+1

= x

i

� (A� �

�

I)

+

r

i

; (3.8)

where the superscript + indicates pseudoinverse [51]. By de�nition of pseudoinverse, AA

+

A = A. The above

equation is still equivalent to the correction equation.

(A� �

�

I)(x

i

� x

i+1

) = (A� �

�

I)(A� �

�

I)

+

r

i

= (A� �

�

I)(A� �

�

I)

+

(A� �

�

I)x

i

= (A� �

�

I)x

i

� r

i

:
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This Newton iteration removes the component orthogonal to x

�

from x

i

. If the initial guess x

0

is not

orthogonal to x

�

, x

1

computed by equation (3.8) is a non-trivial solution of r = 0, in other word, x

1

is the

wanted eigenvector.

Through the above argument, we see that solving the correction equation using pseudoinverse, see equa-

tion (3.8), has signi�cant advantage over the alternative, see equation (3.7). In practice, we don't know the

exact eigenvalue, therefore (A� �I) is not singular, thus (A� �I)

+

= (A� �I)

�1

. We continue to face the

same problems mentioned above. Since the pseudoinverse of a matrix is di�erent from the inverse only if the

matrix is singular, we could force the matrix to be singular as what is done in the Jacobi-Davidson method.

Note that the Jacobi-Davidson method was not derived this way, but this is a valid interpretation. In the

Jacobi-Davidson method, a Krylov subspace method is used to solve the preconditioning equation (3.6).

The Krylov subspace method approximates pseudoinverse by computing a solution of in the range of the

iteration matrix [10]. One di�erence between equation (3.7) and equation (3.8) is that the later one generates

a correction that is orthogonal to the exact eigenvector x

�

, in other word, the correction is in the range of the

iteration matrix. Both the Olsen preconditioning scheme and the Jacobi-Davidson preconditioning scheme

are successful because they generate orthogonal corrections. An alternative strategy to address the same

issue is to �nd a Newton method with a nonsingular Jacobian matrix. Searching for a well behaved Newton

method is the main objective of this section.

Newton based schemes for eigenvalue problems have been investigated from many di�erent points of

view. Peters and Wilkinson showed a Newton method for eigenvalue problems which solves an augmented

(n + 1)� (n+ 1) system [98]. The eigenvalue problem is treated as a unconstrained minimization problem

in this case. As shown above, the correction equation can be regarded as a Newton method for eigenvalue

problems. One of the main uses of the correction equation is to improve the accuracy of computed eigenpairs.

Numerous variations of the correction equation have been studied for this purpose in [34, 35, 36]. Newton

method is also often used as a part of the Homotopy method for eigenvalue problems [2, 3, 89]. In this case

the Newton method used is very close to what is proposed in [98]. The Jacobi-Davidson method is regarded

as a form of Newton's method in the space perpendicular to x [38, 126]. Due to this unique construction, it

avoids some of the pitfalls of the original Davidson preconditioning scheme. There are a number of eigenvalue

methods that are based on Newton method for eigenvalue problems, for example, the trace minimization

method [122] and the inated inverse iteration [47]. Since we are interested in mimic the original Davidson

preconditioning scheme, we will not directly adopt these methods as preconditioners though the idea may

deserve some attention.

In this section we will revisit the augmented Newton scheme proposed in [98]. It is slightly reformulated so

that the eigenvector is scaled in 2-norm. Three variations are derived from this augmented Newton method,

one of which can lead back to the Olsen scheme and all three are equivalent to the Rayleigh quotient iteration

in exact arithmetic. The eigenvalue problem can also be formed as an constrained optimization problem in

which case the Newton method for constrained optimization proposed by Tapia can be applied [142, 143, 144].

We will describe this constrained minimization problem and discuss its properties. In addition, we will

present the Jacobi-Davidson iteration as a Newton method for eigenvalue problems. Coincidentally, it is also

equivalent to the Rayleigh quotient iteration.

In this section we will use the subscript i to indicate an arbitrary iteration. If a subscript is missing from

x, �, or r, it is implied that they refer to x

i

, �

i

, or r

i

.

3.2.1 Rayleigh quotient iteration

The Rayleigh Quotient Iteration (RQI) is a very e�ective method for �nding one eigenvalue and its eigenvector

[51, 93]. Its asymptotic convergence rate is cubic for simple eigenvalues of symmetric eigenvalue problems.

Unless the eigenvalue is known, no algorithm can converge to an eigenvector with higher speed. It is also

very simple to describe, this basic iteration can be summarized in one line,

x

i+1

=

(A� �

i

I)

�1

x

i

k(A� �

i

)

�1

x

i

k

; �

i

� x

T

i

Ax

i

; (3.9)

where x

0

is a unit vector.

Note that the Rayleigh quotient iteration has most of the problems we have observed for preconditioners,

see page 30, because the iteration matrix used in RQI is the same as in the Davidson preconditioning. Our
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i �

i

kr

i

k �

i

1 0.01361736175 0.003830979028 523.5

2 0.01427847652 0.000357647692 1109

3 0.01430356647 2.468630821e-06 3.029e+04

4 0.01430356864 2.006922521e-12 3.503e+08

5 0.01430356864 9.544854661e-17 5.705e+16

Table 3.1: Ritz values and residual norms produced at each step of RQI while computing the smallest

eigenvalue of PLAT362.

i �

i

kr

i

k �

i

1 -90685.22644 911704.3057 762

2 2500.224244 34828.83139 2.567e+04

3 0.211851563 672.661174 2.807e+05

4 0.2109448726 0.01285108761 4.407e+11

5 0.2106508436 0.001874826371 4.598e+11

6 0.2097380738 0.001081499539 5.698e+11

7 0.2094248973 0.000100055371 2.218e+12

8 0.2094224436 6.79586972e-08 2.853e+14

9 0.2094224436 8.26389478e-09 2.134e+18

Table 3.2: Ritz values and residual norms from RQI while computing the smallest eigenvalue of EX2.

main interest here is not to study the Rayleigh quotient iteration but to use it for comparisons against

the Newton methods to be discussed. Because we will often refer to its iteration matrix, we will name it

J

R

, J

R

� A � �I . We will also regard it as the iteration matrix for the Newton iteration described in

equation (3.7) since �

�

is not known before convergence.

To test the Newton methods we will describe, we apply them on a test matrix called PLAT362. It is a

small symmetric positive de�nite matrix, see table 2.2 for the size and the origin of the matrix. All of the

eigenvalues for PLAT362 are in pairs, i.e., they are doublets. The smallest one is about 3:55� 10

�12

, and

the largest one is 0:774. We set the tolerance on the residual norm to be 10

�12

so that eigenvalues can be

accurately resolved. Our intention here is to seek the smallest eigenvalue and the corresponding eigenvector

starting with the initial guess (1; 1; : : : ; 1)

T

. This experiment is conducted on a SPARC

1

10 workstation

using MATLAB

2

which uses 64-bit arithmetic for oating-point operations. The unit round-o� error is

2:2�10

�16

. For our purpose, the unit round-o� error can use understood as follows. If the largest eigenvalue

in absolute value is �

max

, any eigenvalue with absolute value less than j2:2�10

�16

�

max

j is indistinguishable

from zero. The condition number for a Hermitian matrix can be de�ned as � =

j�

max

j

j�

min

j

where �

max

and �

min

are the largest and smallest eigenvalue in absolute value. In 64-bit arithmetic, any matrix with condition

number greater than 4:5 � 10

15

could be considered as practically singular. Note that �nding the smallest

eigenvalues of PLAT362 is relatively hard for the Davidson method.

In a number of cases, we will also use a second test matrix. This second test matrix is EX2 which is

a �nite element matrix for a fully coupled Navier-Stokes equation. It is generated from solving the second

example problem in the FIDAP package

3

. It is a symmetric matrix with only simple eigenvalues ranging from

�7� 10

8

to 3� 10

6

. The matrix size is 441� 441. The largest negative eigenvalue is �48501, the smallest

positive eigenvalue is 0:068. It is chosen because its unusual spectrum where there are 28 will separated

negative eigenvalues and about 160 eigenvalues between 0 and 1. The conditioner number is about 10

10

.

Again we use the vector (1; 1; : : : ; 1)

T

as the initial guess. For this test matrix we iterate till the residual

norm can no longer be reduced.

1

SPARC is a trade of Sun microsystem.

2

MATLAB is a trademark of MathWorks.

3

FIDAP is a trademark of Fluid Dynamics International.
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Table 3.1 show the �

i

, kr

i

k from solving PLAT362 using RQI. In this table, the �rst column is the

iteration number i, the second and the third column are the Ritz values �

i

and the residual norms kr

i

k, the

fourth column is the condition number of the iteration matrix, �

i

= �(J

R

). RQI did not converge to the

smallest eigenvalue in this case. However it does converge very quickly to an eigenvalue close to the initial

Ritz value, �

0

. One important observation to note here is the trend of �. As iteration progresses, it quickly

grows to practically in�nity for 64-bit arithmetic. For later comparisons, we also applied RQI on EX2. The

results is shown in table 3.2. Note that in this case, RQI converges to an eigenvalue within the large cluster

around zero.

3.2.2 Augmented Newton method

One way of formulating the eigenvalue problem is to express it as �nding a zero residual with (�; x) pair as

the independent variable [47, 89, 98]. This formulation can be described as seeking a solution to the following

quadratic equation

�

(A� �I)x = 0;

�

1

2

x

T

x+

1

2

= 0:

(3.10)

The original form of this Newton method is presented in [98]. Many researchers have noticed the scaling

scheme in this paper was not practical, di�erent variations have been used [47]. The scheme shown here is

natural for 2-norm. This is a unconstrained quadratic problem. Given an initial guess (�

0

; x

0

), the Newton

iteration can be described as follows

�

x

i+1

�

i+1

�

=

�

x

i

�

i

�

� J

�1

A

�

(A� �

i

I)x

i

�

1

2

x

T

i

x

i

+

1

2

�

; (3.11)

J

A

=

�

A� �

i

I �x

i

�x

T

i

0

�

: (3.12)

We refer to this scheme as the augmented Newton recurrence because it solves a linear system whose

size is larger than the size of original eigenvalue problem. The validity of this Newton scheme has been

established in [98]. However we will still repeat part of the argument mainly to introduce the techniques

used because they will be used again for other Newton schemes. First, let's give two simple de�nitions which

will be used in a couple of places later.

If (�; x) is an exact eigenpair, and � is a simple eigenvalue, we will call (�; x) a simple eigenpair. If (�; x)

is an eigenpair, the solution for the following equation

(A� �I)y = x; (3.13)

is called a principle vector of grade 2 corresponding to �, see section 39 of [154], and � corresponds to at

least a quadratic elementary divisor of the characteristic polynomial of A, see section 9 of [154]. Note that x

may be arbitrarily scaled in equation (3.13) even though we prefer a unit vector as an eigenvector. A basic

fact about the principle vector is that if � is a simple eigenvalue, there is no grade 2 or higher principle

vector. This fact is used immediately in the proof of the following lemma.

Lemma 3.1 If (�; x) is a simple eigenpair, the Jacobian matrix J

A

for the augmented Newton recursion is

nonsingular.

For a proof of this lemma, see section 4 of [98]. Assuming there is a vector

�

y

�

�

such that

J

A

�

y

�

�

= 0; y 2 R

n

; � 2 R;

then both y and � must be zero. According to the de�nition of J

A

, see equation (3.12), y and � must satisfy

the following equations,

(A� �I)y = �x;

x

T

y = 0:
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i �

i

kr

i

k �

i

1 0.02797189896 1.610024501 690.6

2 0.022194266 0.4459502359 1582

3 0.05259548648 2.64641648 1362

4 0.03122099412 0.5640436082 1.344e+04

5 0.03496170267 0.4255608969 1681

6 0.03595909358 0.2368364335 1376

7 0.04138058562 0.3087099513 1300

8 0.03743277517 0.09756956524 3171

9 0.05383252242 0.5691998046 2177

10 0.03957117095 0.07630243347 1560

11 0.03748476578 0.01478631945 768.5

12 0.03718381556 0.006896535548 1829

13 0.03693657348 0.0001830158864 3965

14 0.03692985166 8.291242081e-07 1.481e+05

15 0.03692982107 3.566089834e-12 3.268e+07

16 0.03692982107 3.980562891e-11 7.599e+12

17 0.03692982107 6.599374204e-14 6.807e+11

Table 3.3: The intermediate results from the augmented Newton recurrence when computing the smallest

eigenvalue of PLAT362.

i �

i

kr

i

k �

i

1 305675.0787 1084020.582 1.740e+15

2 18112.55342 165792.3299 1.840e+14

3 -10808.31223 30650.49007 1.736e+13

4 -2704.146524 3329.024029 3.633e+12

5 -194.3086005 199.2559124 1.620e+12

6 -0.2278873939 1.108173596 1.354e+11

7 0.134302848 0.1432648279 2.197e+09

8 0.07799833383 0.2413701758 1.112e+12

9 0.04437308049 3.650974905 9.400e+10

10 0.05875740161 0.8677481763 1.508e+10

11 0.06520476412 0.1461848604 2.186e+10

12 0.06772453288 0.0086436044 2.737e+10

13 0.0680408643 3.913476664e-05 3.036e+10

14 0.06804357153 4.576369965e-09 3.078e+10

Table 3.4: The intermediate results from applying the augmented Newton recurrence on the EX2 test

problem.

If y is not zero, either y is another eigenvector corresponding to � when � is zero, or y is a principle vector

corresponding to � when � is not zero, in either case � is not a simple eigenvalue which contradicts the

assumption.

This lemma has two implications. First, because equation (3.10) is quadratic in (�; x), it guarantees that

given a good initial guess, the Newton recurrence described by equation (3.11) will converge quadratically.

Second, the iteration matrix, J

A

, is nonsingular. This is important because we are searching for a Newton

method for eigenvalue problem with nonsingular Jacobian matrix. We have found our �rst one.

In our implementation of this method, we only take an eigenvector initial guess as input. This initial guess

is normalized to produce the x

0

for equation (3.11). The initial eigenvalue is taken to be the corresponding

Rayleigh quotient, �

0

= x

T

0

Ax

0

. Table 3.3 shows the convergence process of this method applied to the test
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Figure 3.1: Convergence histories of RQI (solid line) and the augmented Newton recurrence (dashed line)

applied on the PLAT362 test problem.

matrix PLAT362. We see that the condition number of J

A

stay relatively small compared to table 3.1. It

also appears that the augmented Newton method takes more steps to converge than RQI which could be

attributed to the fact that the approximate eigenvectors are not normalized as in RQI. In [98], a version of

this augmented Newton method with a di�erent normalization was shown to be identical to RQI. Later in this

section an normalized version of the about augmented Newton recurrence will also be shown to be identical

to RQI. In the case of RQI, eigenvalue approximations are Rayleigh quotients which are always contained

inside the spectrum of the matrix. However there is no such restriction on the eigenvalue approximation

generated by the augmented Newton method. The eigenvalue approximations by the augmented Newton

recurrence is clearly di�erent from that by RQI, see tables 3.1 and 3.3.

Figure 3.1 shows the convergence history of both RQI and the augmented Newton recurrence. The error

in eigenvalue is estimated as j�

i

� �

�

j where �

�

is replaced with the approximation at the last step. This

error estimate leaves the error at the last iteration as zero which is not plotted in �gure 3.1. From the �gure,

it appears that the augmented Newton recurrence spends a signi�cant number of step in searching for an

eigenpair to converge to. Once it has �nd a destination, it appears to converge almost as fast as RQI.

Table 3.4 shows the intermediate results while solving the EX2 test problem. In this case, the conditioner

number of J

A

stays fairly large. However, it shows an overall decreasing trend. Near convergence, the

condition number settles down near the condition number of the original matrix. This contrasts the trend

in table 3.2 where the condition number of the iteration matrix grows as convergence approaches. This

test shows that even though, J

A

is not singular around the exact solution, it may be ill-conditioned far

from convergence. Another possible short-coming of this method is that the approximate eigenvalues are

not Rayleigh quotients. Because the Rayleigh quotient has many optimality conditions [95], it would be

preferable if the eigenvalue approximation is computed as Rayleigh quotient.

3.2.3 Variations of the augmented Newton method

Because the augmented Newton recurrence solves a linear system of a larger size, it may not be desirable to

work with the augmented system directly. One solution to this problem is to factor J

A

and write the update
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expressions for � and x separately. When J

R

is nonsingular, the block LU factorization of J

A

is as follows

J

A

=

�

I 0

�x

T

J

�1

R

1

��

J

R

�x

0 �x

T

J

�1

R

x

�

:

Note that J

R

= A��I and the variables �, x and r are assumed to have subscript i if no subscript is present.

De�ning 

i

= (1� x

T

i

x

i

)=2, r

i

= (A� �

i

I)x

i

, equation (3.11) can be transformed as follows,

x

i+1

= x

i

� J

�1

R

�

r

i

�



i

x

i

+ x

i

x

T

i

J

�1

R

r

i

x

T

i

J

�1

R

x

i

�

(3.14)

�

i+1

= �

i

+



i

+ x

T

i

J

�1

R

r

i

x

T

i

J

�1

R

x

i

(3.15)

Since the Newton iteration only requires x

i

to compute x

i+1

, the above recurrence can be slightly modi�ed

by scaling x

i+1

to norm one which ensures 

i

is always zero. With this modi�cation, equation (3.14) becomes

x

i+1

=

x

i

� J

�1

O

r

i

kx

i

� J

�1

O

r

i

k

(3.16)

J

�1

O

= (A� �

i

I)

�1

�

I �

x

i

x

T

i

(A� �

i

I)

�1

x

T

i

(A� �

i

I)

�1

x

i

�

:

We can make two interesting observations about this equation. One, equation (3.16) resembles a Newton

iteration with the Jacobian matrix being J

O

. Second, the di�erence between x

i+1

and x

i

computed by

equation (3.16) looks very similar to the Olsen preconditioning scheme, equation (3.1), where (M � �I)

�1

in equation (3.1) is replaced with (A� �I)

�1

in equation (3.16). This establishes a connection between the

Olsen preconditioning scheme with the augmented Newton method for eigenvalue problem which provides a

new interpretation of the Olsen preconditioning scheme.

Another point we should note about the matrix J

O

is that we only know what is J

�1

O

. Because J

�1

O

is

singular, J

�1

O

x

i

= 0, we choose to not de�ne what is J

O

itself. Since we have given the explicit form for

the inverse of the Jacobian matrix in this case, the Newton recurrence can always be carried out as long as

x

i

� J

�1

O

r

i

is not zero. Let x

O

= x

i

� J

�1

O

r

i

, the following is true.

(A� �

i

I)x

O

= r

i

�

�

I �

x

i

x

T

i

(A� �

i

I)

�1

x

T

i

(A� �

i

I)

�1

x

i

�

r

i

= �

x

i

x

T

i

(A� �

i

)

�1

x

i

:

This indicates that x

O

is well de�ned if �

i

is not an exact eigenvalue and x

T

i

(A� �

i

)

�1

x

i

is not zero.

We have neglected to mention how to compute �

i+1

in the recurrence described in equation (3.16). Now

that we use equation (3.16) to compute x

i+1

rather than equation (3.14), we can no long use equation (3.15)

to update � as in the augmented Newton recurrence. The alternative is to compute �

i+1

as a Rayleigh

quotient, i.e., �

i+1

= x

T

i+1

Ax

i+1

=x

T

i+1

x

i+1

. According to the properties of Rayleigh quotient, this new �

i+1

is not worse than that given by equation (3.15). This modi�ed scheme should converge at least as fast

as the augmented Newton scheme. Because the resemblance to the Olsen's scheme for preconditioning,

this recurrence is named the Newton-Olsen recurrence. The Jacobian matrix J

O

for this scheme looks

complicated. However due to the following connection with the Rayleigh quotient iteration, we know that

the Newton-Olsen recurrence converges fast.

Lemma 3.2 Given the same initial unit vector for both the Newton-Olsen recurrence and the Rayleigh

quotient iteration, if A � �

i

I neve becomes singular and x

T

i

(A � �

i

I)

�1

x

i

never becomes zero, the two

recurrences produce the same result.

Proof. At step i, assume x

i

produced by both recurrences are the same. The subscript i is dropped in

the rest of this proof because we will not refer to any other step. Let x

R

and x

O

denote the solution of the

Rayleigh quotient iteration and the Newton-Olsen recurrence before scaling, i.e.,

x

R

= (A� �I)

�1

x

x

O

= x� J

�1

O

r = x� (A� �I)

�1

�

I �

xx

T

(A� �I)

�1

x

T

(A� �I)

�1

x

�

r:
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i �

i

kr

i

k �

i

1 0.01361736175 0.003830979028 1.153e+16

2 0.01427847652 0.000357647692 4.471e+15

3 0.01430356647 2.468630821e-06 1.74e+15

4 0.01430356864 2.013442306e-12 1.165e+16

5 0.01430356864 8.487764927e-11 3.19e+18

6 0.01430356864 6.952611828e-11 4.76e+18

Table 3.5: The intermediate results of the Newton-Olsen recurrence applied on the PLAT362 test problem.

i �

i

kr

i

k �

i

1 0.01361736175 0.003830979028 690.6

2 0.01427847652 0.000357647692 1457

3 0.01430356647 2.468630821e-06 3.985e+04

4 0.01430356864 2.006918586e-12 4.609e+08

5 0.01430356864 1.685011223e-16 2.118e+16

Table 3.6: Intermediate results from the normalized augmented Newton recurrence when applied on

PLAT362.

Using the de�nition of r = (A � �I)x and the fact that x

T

x = 1, we can simplify the equation for x

O

as

follows

x

O

= x� x+ (A� �I)

�1

x=x

T

(A� �I)

�1

x = x

R

=x

T

(A� �I)

�1

x:

If x

T

(A � �I)

�1

x 6= 0, x

O

and x

R

only di�er by a �nite scalar constant. Since both RQI and the Newton-

Olsen recurrence scale their approximate eigenvectors to norm 1, it is clear that they give the same answer.

2

This lemma indicates that RQI and the Newton-Olsen method are equivalent to each other if (A� �

i

I)

is never singular and x

T

i

(A��

i

I)

�1

x

i

is never zero. However, when (A��

i

I) is singular, (�

i

; x

i

) is an exact

eigenpair. Whether it is the desired one or not, there is no reason to continue the current recurrence. If

the desired one is found we should stop, else a new initial guess is need to start another recurrence. When

(�; x) is close to a simple eigenpair, there is no solution to the following equations, (A� �I)y = x, y

T

x = 0.

Thus x

i

(A� �

i

I)

�1

x

i

can not be zero. In summary, if �

i

approaches a simple eigenvalue, then RQI and the

Newton-Olsen recurrence are equivalent to each other.

When near the exact solution, x

R

� x=(�

�

� �), which is poorly scaled. The same is not true for x

O

.

Because x

T

(A� �I)

�1

x � 1=(�

�

� �),

x

O

� x: (3.17)

Intuitively, the Rayleigh quotient iteration works to amplify the x

�

component in x

i

, while the Newton-Olsen

scheme works to remove components orthogonal to x

�

from x

i

. Numerically, this suggests that x

O

is a better

behaved vector than x

R

even though there are theoretically equivalent. However, this bene�t is not realized

because J

O

is very ill-conditioned in practice.

Table 3.5 shows the Newton-Olsen method applied to the test matrix PLAT362. It appears that the

eigenvalue is converging to the same one as RQI. Unfortunately the residual norm did not decrease below

10

�11

. This is due to the fact that multiplying J

�1

O

by a vector requires computing solving with A � �

i

I

twice. Signi�cant error can accumulate during this computation.

Since J

A

is well conditioned near convergence, instead of using equation (3.16) to compute x

i+1

, we could

use equation (3.11) and scale x

i+1

after every step. Following the Newton-Olsen recurrence, we can compute

the eigenvalue approximation �

i+1

as a Rayleigh quotient instead of using the result from equation (3.11).

This is a normalized augmented Newton method since the intermediate approximate solutions of the eigen-

vector are scaled to have unit norm. In normalized augmented Newton scheme, the iteration matrix is still

J

A

which is known to be nonsingular near convergence. Theoretically, the normalized augmented Newton
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i �

i

kr

i

k �

i

1 -90685.22644 911704.3057 1.740e+15

2 2500.224244 34828.83139 7.433e+13

3 0.2118515631 672.661174 1.877e+12

4 0.2109448739 0.01285108732 1.011e+12

5 0.2106508463 0.00187482772 2.201e+12

6 0.2097380766 0.001081503671 5.322e+11

7 0.2094248973 0.000100056939 1.739e+12

8 0.2094224437 6.722151431e-08 7.831e+12

9 0.2094224435 3.157933201e-09 8.052e+12

Table 3.7: Intermediate results from the normalized augmented Newton recurrence when applied on EX2.

method is exactly the same as the Newton-Olsen scheme. Numerically, this normalize augmented Newton

recurrence should be better than the Newton-Olsen scheme since the matrix J

A

has smaller condition number

than J

O

.

Table 3.6 shows the results for this normalized augmented Newton recurrence. We can see that the

condition numbers are must smaller than those shows in table 3.5 which are produced with the Newton-

Olsen recurrence. This method not only is theoretically equivalent to RQI, it also produces the exact same

eigenvalue and residual norm for most steps. The residual norms di�er at the last step only because RQI's

iteration matrix is too ill-conditioned, and the round-o� errors become signi�cant. Note that the condition

number of J

A

grows at the same pace as that of J

R

, see table 3.1. This is because we only prove that

J

A

is well behaved if the eigenvalue is simple. In this case, we know the eigenvalue is a doublet, J

A

is

not guaranteed to be well conditioned. The numbers in table 3.6 indicate that J

A

becomes singular as the

eigenvalue converges.

Table 3.7 shows the results of applying the normalized augmented Newton method on the other test

matrix EX2. Since all eigenvalues are simple in this case, the condition number of J

A

is not too much larger

than the condition number of the original matrix.

The Jacobian matrix used in equation (3.16) can be approximated as follows

J

�1

O

� (A� �I)

�1

�

I �

�xx

T

(A� �I)

�1

1 + �x

T

(A� �I)

�1

x

�

;

where � is a scalar constant. When j�x

T

(A� �I)

�1

xj is much larger than 1, the above approximation is an

accurate one, in which case J

O

� A��I+�xx

T

[51, the Sherman-Morrison formula]. This approximate form

of the Jacobian matrix is simpler than the original de�nition of J

O

which should make a more viable option

as a preconditioner. This inexact Jacobian matrix is J

R

with approximate Wielandt deation [116, 154]. We

can use this approximation to de�ne another well behaved Newton recurrence.

De�ne

J

I

= A� �

i

I + x

i

x

T

i

: (3.18)

The following is true.

Lemma 3.3 1. If (�

i

; x

i

) is a simple eigenpair of A, J

I

is nonsingular.

2. If �

i

is an eigenvalue with multiplicity greater than 1, the matrix J

I

is singular. The matrix J

I

's null

space should be one dimension less than that of (A� �

i

I).

3. If the matrix (A� �

i

I) is nonsingular and x

T

i

(A� �

i

I)

�1

x

i

is not -1, the matrix J

I

is nonsingular.

Proof.

1. If (�

i

; x

i

) is a simple eigenpair, the spectrum of J

I

is the spectrum of A shifted by ��

i

except the zero

eigenvalue of (A��

i

I) is moved to 1. Since �

i

is a simple eigenvalue of A, (A��

i

I) has only one zero

eigenvalue. By construction, J

I

has moved this zero eigenvalue away from zero.
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i �

i

kr

i

k �

i

1 0.01361736175 0.003830979028 691.1

2 0.01427847652 0.000357647692 1457

3 0.01430356647 2.468630821e-06 3.985e+04

4 0.01430356864 2.006917624e-12 4.609e+08

5 0.01430356864 2.769830393e-17 2.294e+16

Table 3.8: The results from the inated Newton recurrence applied on PLAT362.

2. If the dimension of the null space of (A� �I) is more than one, the construction of J

I

only moves the

dimension parallel to x

i

. The matrix J

I

has a null space of smaller dimension than (A� �

i

I).

3. If the matrix (A � �

i

I) is nonsingular, we can try to solve the following equation to identify the null

space of J

I

.

(A� �

i

I)y + (x

T

i

y)x

i

= 0:

The above equation appears to have the following solutions, y = �(A � �

i

I)

�1

x

i

where � is a scale

constant. When we substitute this expression of y into the above equation, the following is the outcome.

�x

i

(1 + x

T

i

(A� �

i

I)

�1

x

i

) = 0:

If x

T

i

(A� �

i

I)

�1

x

i

is not -1, the above equation can only be satis�ed with � = 0. This indicates that

only y = 0 can satisfy equation J

I

y = 0. In other word, J

I

is nonsingular.

2

From this proof, we see that when (�

i

; x

i

) is not an exact eigenpair, J

I

can be singular if x

T

i

(A��

i

I)

�1

x

i

=

�1. By de�nition, x

i

is a unit vector, which is located on a n-dimensional unit sphere. If the surface de�ned

by x

T

i

(A � x

T

i

Ax

i

I)

�1

x

i

= �1 intersects this n-dimensional unit sphere, then for those matrices, J

I

may

be singular when x

i

fall on the intersections. In short, there are only very special values of x

i

can make J

I

singular.

When J

I

is nonsingular and J

I

x

i

6= r

i

, the following recurrence is a valid Newton method for eigenvalue

problem,

x

i+1

=

x

i

� J

�1

I

r

i

kx

i

� J

�1

I

r

i

k

: (3.19)

Note that the condition of J

I

x

i

6= r

i

is satis�ed because x

i

is a unit vector, �

i

= x

T

i

Ax

i

and r

i

= (A��

i

I)x

i

.

Because of the connection with the Wielandt deation, this recurrence is called the inated Newton

recurrence. We could have de�ned J

I

as A � �I + �xx

T

. However because of a lack of practical way to

choose � we simply set it to 1 in equation (3.18). Here are some suggestions for choosing � if appropriate

information is available. First, � = 0 is not a good choice. One good choice is to pick a number within the

spectrum of J

R

, for example, � = �

0

� �

�

. If an iterative solver like CG is used to solve equation (3.19), it

is good to place � at the center of a large cluster in J

R

's spectrum. This will improve the convergence of the

iterative solver. The matrix J

I

is the same as the matrix for the inated inverse iteration method shown in

[47, equation (5.13)]. The derivation of the inated inverse iteration was quite di�erent from what is shown

here, but it is also developed from the Newton method of [98].

From the proof of lemma 3.2, it is easy to see that the following is true.

Lemma 3.4 Given the same unit vector x to both the inated Newton recurrence and the Rayleigh quotient

iteration, if A� �I is nonsingular and 1 + x

T

(A� �I)

�1

x is nonzero, the two recurrence produce the same

result.

Table 3.8 shows the results of applying the inated Newton recurrence on the test matrix PLAT362. The

results of EX2 is shown in table 3.9. The inated Newton recurrence is a fairly stable scheme, the condition

number of J

I

is similar to that of the normalized augmented Newton method, see table 3.6. Both J

A

and J

I
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i �

i

kr

i

k �

i

1 -90685.22644 911704.3057 762

2 2500.224244 34828.83139 2.567e+04

3 0.2118515633 672.661174 2.807e+05

4 0.2109448763 0.01285108116 1.165e+12

5 0.2106508532 0.001874830432 2.23e+12

6 0.2097380827 0.001081513364 5.322e+11

7 0.2094248975 0.0001000607567 1.739e+12

8 0.2094224435 7.269909007e-08 7.831e+12

9 0.2094224435 2.276624783e-08 8.052e+12

Table 3.9: The results from the inated Newton recurrence applied on EX2.

becomes singular when the eigenvalue computed is not simple, see table 3.6 and 3.8. When the eigenvalue

is simple as in the EX2 case, both the normalized augmented Newton recurrence and the inated Newton

recurrence have similar condition number for their iteration matrices near convergence, see table 3.7 and 3.9.

We have been concentrating on what happens near convergence. To use them as preconditioner, it is

just as important to study the recurrences when the solutions is far from convergence. From table 3.1 and

3.2 we see that at the beginning of the Rayleigh quotient iteration, the condition number of J

R

is relatively

small. Though J

A

is well behaved near convergence, it can have very large condition far from convergence,

see table 3.4 and 3.7. The matrix J

I

is better than J

A

in this respect, because far from convergence, the

condition number of J

I

is fairly small compared to that of J

A

. In fact, table 3.8 and 3.9 show that the

condition number of J

I

is very close to that of J

R

, see table 3.1 and 3.2.

3.2.4 Constrained Newton method

De�ning r � (A � x

T

AxI)x, i.e., replacing � with x

T

Ax, the eigenvalue problem can be expressed as an

optimization problem with an equality constraint,

�

Ax � xx

T

Ax = 0;

kxk = 1:

(3.20)

With the eigenvalue problem stated in this form, Tapia's algorithm for constrained optimization can directly

apply [142].

The algorithm given in [142] prescribes a formula for constructing a Newton recursion to solve equa-

tion (3.20). To apply to the eigenvalue problem, we need to �nd the Jacobian matrix, J

C

. Speci�cally, the

recursion can be written as

x

i+1

=

x

i

� J

�1

C

r

i

kx

i

� J

�1

C

r

i

k

; (3.21)

J

C

�

dr

dx

= A� �

i

I � x

i

x

T

i

(A+A

T

): (3.22)

When A is symmetric, the Jacobian matrix can be simpli�ed to

J

C

= A� �

i

I � 2x

i

(Ax

i

)

T

:

This scheme for computing eigenpairs will be referred to as the constrained Newton recurrence later.

In order for equation (3.21) to be a valid Newton method, we need to be able to invert the Jacobian

matrix. The following lemma states when J

C

is nonsingular.

Lemma 3.5 If (�

�

; x

�

) is a simple eigenpair and � is not zero, then J

C

is nonsingular.
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Proof. To prove this lemma, we only need to argue that there is no nontrivial vector which satis�es the

following equation

J

C

y = 0:

Substitute the de�nition of J

C

, equation (3.22), into the above equation and note that (�

�

; x

�

) is an exact

eigenpair. The above equation becomes

(A� �I)y = 2x

�

x

�

T

(A+A

T

)y:

If y is not zero, there are two possibilities. If x

�

T

(A+A

T

)y is zero, then y is an eigenvector corresponding to

�

�

. Since �

�

is a simple eigenvalue, y = �x

�

where � is a nonzero scalar constant. Because x

�

T

(A+A

T

)x

�

=

2�

�

is not zero, x

�

T

(A+A

T

)y can not be zero. The second possibility is that y is a principal vector of grade

2 when x

�

T

(A + A

T

)y is not zero. This is not possible because � is a simple eigenvalue. Thus, there is no

nontrivial y that can satisfy J

C

y = 0. 2

The residual r = Ax � x

T

Axx is a polynomial of x. A consequence of this lemma is that there exists a

region around x

�

where for any vector x the Jacobian matrix J

C

is nonsingular. In order for the recurrence

not to break down, x

i+1

can not be zero. If x

i+1

is zero, the following is true,

J

C

x

i

= r

i

:

The left-hand side of the above equation is J

C

x

i

= r

i

� 2�

i

x

i

. It is clear that if �

i

is zero, then x

i+1

is

zero. When �

i

is close to an nonzero eigenvalue, we can expect �

i

to be nonzero. In which case, the above

constrained Newton recurrence will not break down. If the matrix A is de�nite, the method will not break

down either. In general, when the recurrence is far from converging, the probability of encounter a zero

Rayleigh quotient is small because the x values that can produce zero Rayleigh quotient is a very small

portion of all possible x values.

Near a simple nonzero eigenvalue, the recurrence described by equation (3.21) satis�es the conditions of

Theorem 3.3 of [142]. Therefore given a good initial guess, it converges quadratically. The following lemma

shows that it will convergence cubically for symmetric eigenvalue problems.

Lemma 3.6 When �

i

is not zero and not an exact eigenvalue, if x

i

is the same for both the constrained

Newton scheme and the Rayleigh quotient iteration, then, x

i+1

is also the same.

When �

i

is an exact eigenvalue, the Rayleigh quotient iteration breaks down. The constrained Newton

method breaks down when �

i

is zero or when �

i

is an exact eigenvalue with multiplicity greater than 1. The

premise of the lemma ensures that both recurrences will not break down.

Proof. If x

i

is the same for both methods, in order to show x

i+1

is the same too, we will �rst show that

x

C

and x

R

are parallel to each other, where

x

C

= x� J

�1

C

r; x

R

= J

�1

R

x:

Since there is no other subscript involved in the rest of this proof, we drop the subscript i from the variables.

Substituting the value of J

C

from equation (3.22), the relation about x

C

can be rewritten as

(A� �I � xx

T

A� xx

T

A

T

)(x

C

� x) = �r:

After some straightforward rearrangement of the terms, and noting that r = (A� �I)x, it can be written as

(A� �I)x

C

= xx

T

(A+A

T

)(x

C

� x): (3.23)

Let � = x

T

(A+A

T

)(x

C

� x), equation (3.23) becomes

(A� �I)x

C

= �x:

If both RQI and the constrained Newton method do not break down, then (A � �I) is nonsingular and x

C

is nonzero. Thus the left-hand side of equation (3.23) is not zero. This shows that � must be nonzero.

In conclusion, x

C

and x

R

di�er by a nonzero scalar constant �. Since the two methods scale x

C

and x

R

to generate the eigenvector approximations, they generate the same vector x

i+1

for the next iteration. 2
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i �

i

kr

i

k �

i

1 0.01361736175 0.003830979028 523.5

2 0.01427847652 0.000357647692 1109

3 0.01430356647 2.468630821e-06 3.029e+04

4 0.01430356864 2.006917728e-12 3.503e+08

5 0.01430356864 3.078958720e-17 5.735e+16

Table 3.10: The intermediate results of using the constrained Newton recurrence on PLAT362.

i �

i

kr

i

k �

i

1 -90685.22644 911704.3057 759.3

2 2500.224244 34828.83139 2.550e+04

3 0.211851563 672.661174 3.237e+05

4 0.2109448741 0.0128510811 1.549e+12

5 0.210650847 0.001874827738 2.271e+12

6 0.2097380775 0.001081505247 5.322e+11

7 0.2094248973 0.000100056626 1.739e+12

8 0.2094224436 6.730182732e-08 7.831e+12

9 0.2094224436 2.973326427e-09 8.052e+12

Table 3.11: The results of applying the constrained Newton recurrence on EX2.

To have an idea of how large the constant � = x

C

=x

R

is, we replace x

C

with �x

R

in the de�nition of �,

� = x

T

(A+A

T

)(�x

R

� x):

This leads to the following equation for �,

� =

x

T

(A+A

T

)x

x

T

(A+A

T

)x

R

� 1

:

If x is close to the exact eigenvector x

�

and A is symmetric, we can approximate � as follows,

� �

2�

2�

�

�

��

� 1

� �

�

� �:

The assumption of the above approximation is that x is close enough to the exact solution such that x

R

�

x=(�

�

� �). Using this approximate �, we know that near convergence,

x

C

� x: (3.24)

From this equation, we know that the correction to x

i

produced by the constrained Newton recurrence is

almost perpendicular to x

i

as in the Newton-Olsen recurrence, see equation (3.17). Similar to the Newton-

Olsen recurrence, we can expect this recurrence to be numerically more stable than the Rayleigh quotient

iteration. In addition, since the Jacobian matrix of this recurrence is nonsingular near convergence, we

expect no obstacle to realize this theoretical bene�t.

Tables 3.10 and 3.11 show the eigenvalue and residual norm at each step of the constrained Newton

recurrence. Note that the eigenvalue approximations and the residual norms are nearly identical with that

of RQI. Similar to J

A

, the condition number of J

C

also grows quite rapidly on the PLAT362 test problem

because the eigenvalues has multiplicity of two, see table 3.3 and 3.10.

3.2.5 Jacobi-Davidson recurrence

The preconditioning step of the Jacobi-Davidson method solves the following equation approximately [14,

38, 41, 124, 125, 126],

(I � xx

T

)(A � �I)(I � xx

T

)z = r:
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The matrix J

J

� (I � xx

T

)(A � �I)(I � xx

T

) is singular, so it is not possible to solve the above equation

in the usual sense. One of the objectives of Jacobi-Davidson preconditioner is to make z orthogonal to

x. However, the above equation does not enforce this condition. On the contrary, since x is in the null

space of J

J

, the solution to this equation can have an arbitrarily large component in x direction. Following

the example of the correction equation, see equation (3.8), we regard the Jacobi-Davidson preconditioning

scheme as solving the following equation,

z =

�

(I � xx

T

)(A� �I)(I � xx

T

)

�

+

r: (3.25)

Because the pseudoinverse is always de�ned for a matrix, the result from this equation is unique and z

is orthogonal to x. If � is the Rayleigh quotient of x and r is the corresponding residual vector, the

original Jacobi-Davidson preconditioning equation, equation (3.6), is consistent [10, 7, 51]. In this case, the

result from equation(3.25) satis�es the original equation and it is the minimum norm solution. Based on

equation (3.25), we de�ne the following recurrence formula for �nding an eigenvector starting from a unit

vector x

0

,

x

i+1

=

x

i

� J

+

J

r

i

kx

i

� J

+

J

r

i

k

: (3.26)

This recurrence looks similar to the constrained Newton recurrence. The Jacobi-Davidson method has been

argued to be a Newton method [38, 126] based on equation (3.6). It is reasonable to regard equation (3.26)

as a form of Newton's method for the eigenvalue problem. Because J

+

J

is always de�ned, J

+

J

r is computable.

Since x

i

is perpendicular to J

+

J

r

i

, x

i

� J

+

J

r

i

will never be zero. Thus the above recurrence is well de�ned.

Because of the singular Jacobian matrix, we may not expect it to have super-linear convergence as a Newton

method with nonsingular Jacobian. However, the following lemma shows that it actually converges cubically

because of the connection to the Rayleigh quotient iteration.

Lemma 3.7 For Hermitian matrices, the Jacobi-Davidson recurrence described by equation (3.26) is equiv-

alent to the Rayleigh quotient iteration as long as the Rayleigh quotient iteration can be carried out and

x

T

i

(A� �

i

I)

�1

x

i

is never zero.

Proof. Starting with a unit vector x, � = x

T

Ax, let

x

R

= J

�1

R

x; x

J

= x� J

+

J

r;

where J

R

= A��I , J

J

= (I �xx

T

)(A��I)(I �xx

T

), x

R

and x

J

are the unscaled solutions of RQI and the

Jacobi-Davidson recurrence. De�ne z � x � x

J

, because of the consistency of equation (3.6), the following

must be true,

(I � xx

T

)(A� �I)(I � xx

T

)z = r; x

T

z = 0:

From this equation, we know that

(A� �I)z = r + �x;

where � is an undetermined scalar constant. This equation leads to the following solution for z when � is

not an eigenvalue,

z = x+ �x

R

:

Now we can use the orthogonality condition of z to determine � as follows,

� =

�1

x

T

x

R

=

�1

x

T

(A� �I)

T

x

:

Thus the solution of x

J

is

x

J

=

x

R

x

T

x

R

:

If x

T

i

(A��

i

I)

�1

x

i

is never zero, � is a nonzero �nite scalar number. In this case, x

J

is parallel to x

R

. After

they are scaled to unit norm, they should be identical to each other. 2
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i �

i

kr

i

k

1 0.01361736175 0.003830979028

2 0.01427847652 0.000357647692

3 0.01430356647 2.468630821e-06

4 0.01430356864 2.007419541e-12

5 0.01430356864 2.521861421e-17

Table 3.12: Solving PLAT362 with the Jacobi-Davidson recurrence.
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Figure 3.2: Condition numbers of the Jacobian matrix when solving PLAT362.

One observation from this proof is that the solution from the Jacobi-Davidson recurrence is exactly the

same as that of the Newton-Olsen recurrence. They are the same even before scaling. This con�rms again

that the Jacobi-Davidson preconditioning is equivalent to the Olsen preconditioning scheme.

Table 3.12 shows the approximate solutions from applying the Jacobi-Davidson recurrence on PLAT362.

We did not show the condition number because J

J

is known to be singular. As the lemma predicted, this

method produced exactly the same results as that of RQI.

Figures 3.2 and 3.3 depicts the condition number of several iteration matrices versus the iteration number.

The names of the recurrences are abbreviated to contain only their initials. From �gure 3.2 we can see that

the conditioner number of J

O

, from the Newton-Olsen recurrence (NOR), is consistent with the fact that it

is singular. The four other methods shown in �gure 3.2 fall into two groups, the Rayleigh quotient iteration

(RQI) and the constrained Newton recurrence (CNR) are one, the normalized augmented Newton recurrence

(NANR) and the inated Newton recurrence (DNR) are in the other. In this case, the condition numbers

of J

R

(RQI) and J

C

(CNR) are nearly identical at every step, the condition numbers of J

A

(NANR) and J

I

(DNR) are very close to each other. Since the eigenvalue computed is not simple, as the iterations approach

convergence, the condition number of all iteration matrices increase to 10

16

which is in�nity for 64-bit IEEE

arithmetic operations. In the EX2 case, �gure 3.3, the condition number of J

A

(NANR) is very large initially

which should be considered a disadvantage of the normalized augmented Newton method. Near convergence,
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Figure 3.3: Condition numbers of the Jacobian matrix when solving EX2.

only the condition number of J

R

did not stop increasing. As we have shown, near convergence, J

A

, J

C

, J

I

are guaranteed to be nonsingular. Figure 3.3 clearly illustrates this fact.

3.2.6 E�ects of biased shift

In previous subsections, we have discussed our approaches to avoid the singular iteration matrix problem.

Here we revisit a technique used in [133] to address the mis-convergence problem and the inde�nite iteration

matrix problem.

Table 3.1, 3.3, 3.5, 3.6, 3.8, 3.10, and 3.12 show the progress of seven eigen-system solvers. We wanted

the smallest eigenvalue and the corresponding eigenvector. However, none of them converges to the desired

eigenvalue. This is a good example of the mis-convergence problem mentioned on page 30. The Newton

method converges quickly to an eigenpair close to the initial guess. Obviously, RQI has a di�erent measure

of distance from the augmented Newton method, see table 3.2 and 3.4. Nevertheless, they do not converge

to the smallest eigenvalue. Additional modi�cation is needed to reach the desired solution.

To make the eigen-system solvers converge to the smallest eigenvalue, we borrow a shifting strategy

from preconditioning [133], see equation (3.5). Since we only compute one eigenvalue, no gap information is

available, we will always use the residual norm as the error estimate � instead of equation (3.4). The new

iteration matrices are

J

R

= A� (�� krk)I;

J

A

=

�

A� (�� krk)I �x

�x

T

0

�

;

J

�1

O

= (A� (�� krk)I)

�1

 

I �

xx

T

(A� (�� krk)I)

�1

x

T

(A� (�� krk)I)x

!

�1

;

J

I

= (A� (�� krk)I + xx

T

);
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i �

i

kr

i

k �

i

1 0.003990869031 0.007600999703 47.02

2 0.001231682013 0.001866070494 215.5

3 0.0004364948496 0.0004969443916 1222

4 2.040621091e-05 8.011132754e-05 1.281e+04

5 5.379204885e-06 1.386776412e-05 1.297e+04

6 1.836408562e-06 2.954308290e-06 9.122e+04

7 4.082588328e-07 7.881009546e-07 6.926e+05

8 1.172643067e-07 1.864027929e-07 2.038e+06

9 3.123300507e-08 4.955108890e-08 1.12e+07

10 8.241978672e-09 1.289119192e-08 4.226e+07

11 1.760465318e-09 3.300845435e-09 1.664e+08

12 4.286225365e-10 8.463469134e-10 5.015e+08

13 4.420207032e-11 2.043842802e-10 1.838e+09

14 4.630879284e-12 2.980025841e-11 4.729e+09

15 3.556038027e-12 1.030103458e-12 2.696e+10

16 3.554631314e-12 1.424944003e-15 7.527e+11

Table 3.13: The intermediate solutions of RQI with the biased shift on PLAT362.

i �

i

kr

i

k �

i

1 0.003990869031 0.007600999703 3.549e+16

2 0.001231682013 0.001866070494 1.304e+15

3 0.0004364948496 0.0004969443916 1.944e+16

4 2.040621091e-05 8.011132754e-05 9.472e+16

5 5.379204885e-06 1.386776412e-05 2.041e+15

6 1.836408562e-06 2.954308290e-06 1.347e+15

7 4.082588328e-07 7.881009546e-07 1.913e+15

8 1.172643067e-07 1.864027929e-07 1.91e+15

9 3.123300508e-08 4.955108890e-08 3.746e+15

10 8.241978666e-09 1.289119197e-08 2.516e+15

11 1.760465327e-09 3.300847839e-09 4.574e+15

12 4.286230045e-10 8.463534536e-10 2.191e+15

13 4.420288725e-11 2.044201828e-10 9.53e+15

14 4.631278766e-12 2.982954965e-11 8.267e+15

15 3.556041538e-12 1.101367765e-12 6.055e+15

16 3.554626657e-12 1.828728350e-14 2.187e+15

Table 3.14: The intermediate solutions of the Newton-Olsen recurrence with biased shift on PLAT362.

J

C

= A� (�� krk)I � 2x(Ax)

T

;

J

J

= (I � xx

T

)(A� (�� krk)I)(I � xx

T

):

To simplify the equations, we use � to denote the biased estimate of eigenvalues in later discussions.

Tables 3.1, 3.5, 3.6, 3.8, 3.10, and 3.12 show the results of �nd an eigenpair of PLAT362 without shifting,

and tables 3.13, 3.14, 3.15, 3.16, 3.17, and 3.18 show the results with the biased shift discussed before. We

did not show the results from the augmented Newton method because it did not converge with the biased

shift. The shift has changed the algorithm enough to break it. This may make it less favorable compared

to others. The other six methods converge to the smallest eigenvalue. Again we notice the di�erence in

the magnitude of the condition numbers, see table 3.13{3.17. Another point to note here is that even with

biased shift, the six methods also produces identical intermediate solutions.
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i �

i

kr

i

k �

i

1 0.003990869031 0.007600999703 60.45

2 0.001231682013 0.001866070494 278.1

3 0.0004364948496 0.0004969443916 1578

4 2.040621091e-05 8.011132754e-05 1.655e+04

5 5.379204885e-06 1.386776412e-05 1.675e+04

6 1.836408562e-06 2.954308290e-06 1.178e+05

7 4.082588328e-07 7.881009546e-07 8.945e+05

8 1.172643067e-07 1.864027929e-07 2.633e+06

9 3.123300508e-08 4.955108890e-08 1.446e+07

10 8.241978671e-09 1.289119191e-08 5.458e+07

11 1.760465313e-09 3.300845428e-09 2.149e+08

12 4.286225377e-10 8.463469076e-10 6.477e+08

13 4.420207444e-11 2.043842793e-10 2.374e+09

14 4.630879693e-12 2.980025340e-11 6.107e+09

15 3.55604338e-12 1.030113584e-12 3.481e+10

16 3.554634202e-12 1.437247262e-15 9.721e+11

Table 3.15: The intermediate solutions of the normalized augmented Newton recurrence with biased shift

on PLAT362.

i �

i

kr

i

k �

i

1 0.003990869031 0.007600999703 61.45

2 0.001231682013 0.001866070494 279.1

3 0.0004364948496 0.0004969443916 1579

4 2.040621091e-05 8.011132754e-05 1.655e+04

5 5.379204885e-06 1.386776412e-05 1.675e+04

6 1.836408562e-06 2.954308290e-06 1.178e+05

7 4.082588328e-07 7.881009546e-07 8.945e+05

8 1.172643067e-07 1.864027929e-07 2.633e+06

9 3.123300508e-08 4.955108891e-08 1.446e+07

10 8.241978667e-09 1.289119191e-08 5.458e+07

11 1.760465324e-09 3.300845435e-09 2.149e+08

12 4.286225373e-10 8.463469144e-10 6.477e+08

13 4.420206633e-11 2.043842666e-10 2.374e+09

14 4.630881439e-12 2.980025683e-11 6.107e+09

15 3.556041954e-12 1.030106692e-12 3.481e+10

16 3.554625284e-12 1.421387398e-15 9.721e+11

Table 3.16: The intermediate solutions of the inated Newton iteration with biased shift on PLAT362.

Even with the biased shift, there is no guarantee that given an arbitrary initial guess, any of the method

will converge to the smallest eigenvalue. For example, if the initial guess is an eigenvector not corresponding

to the smallest eigenvalue, all Newton-type methods will �nd the initial residual is zero and stop. Table 3.19

is a more ordinary example. The Rayleigh quotient iteration with biased shift is applied to the EX2 with

the initial guess [1; 1; : : : ; 1]

T

, it converges to an eigenvalue much smaller than without the biased shift, see

table 3.2. However the eigenvalue it converges to is still far from the smallest one.

For Hermitian eigenvalue problem the biased shift also cures the inde�nite iteration matrix problem of

regular Davidson preconditioning, see page 30. Because the biased estimated of the smallest eigenvalue is

usually less than the actual one, J

R

(= A� (��krk)I) is positive de�nite. By construction J

A

is inde�nite.

If J

R

is positive de�nite, J

J

is positive semi-de�nite, and J

I

is also positive de�nite. The Jacobian matrices

for the Newton-Olsen recurrence and the constrained Newton recurrence still may be inde�nite.
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i

kr

i

k �

i

1 0.003990869031 0.007600999703 87.34

2 0.001231682013 0.001866070494 528.8

3 0.0004364948496 0.0004969443916 2.89e+04

4 2.040621091e-05 8.011132754e-05 4.085e+04

5 5.379204885e-06 1.386776412e-05 1.559e+04

6 1.836408562e-06 2.954308290e-06 1.42e+05

7 4.082588328e-07 7.881009546e-07 3.186e+06

8 1.172643067e-07 1.864027928e-07 4.497e+06

9 3.123300508e-08 4.955108888e-08 7.077e+07

10 8.241978654e-09 1.289119190e-08 2.471e+08

11 1.760465324e-09 3.300845447e-09 8.113e+08

12 4.286225581e-10 8.463469248e-10 1.195e+09

13 4.420204006e-11 2.043841908e-10 3.181e+09

14 4.630877630e-12 2.980023791e-11 5.303e+09

15 3.556036657e-12 1.030109282e-12 3.593e+10

16 3.554631124e-12 1.419808576e-15 7.527e+11

Table 3.17: The intermediate solutions of the constrained Newton recurrence with the biased shift on

PLAT362.

i �

i

kr

i

k

1 0.003990869031 0.007600999703

2 0.001231682013 0.001866070494

3 0.0004364948496 0.0004969443916

4 2.040621091e-05 8.011132754e-05

5 5.379204885e-06 1.386776412e-05

6 1.836408562e-06 2.954308290e-06

7 4.082588328e-07 7.881009546e-07

8 1.172643067e-07 1.864027929e-07

9 3.123300506e-08 4.955108889e-08

10 8.241978667e-09 1.289119191e-08

11 1.760465327e-09 3.300845443e-09

12 4.286225457e-10 8.463469260e-10

13 4.420207340e-11 2.043842919e-10

14 4.630881801e-12 2.980026807e-11

15 3.556038783e-12 1.030102692e-12

16 3.554632854e-12 1.419106276e-15

Table 3.18: The intermediate solutions of the Jacobi-Davidson recurrence with biased shift on PLAT362.

Figure 3.4 plots the condition numbers shown in tables 3.13{3.17. Compared with �gure 3.2, we see that

the conditioner numbers are smaller in �gure 3.4. The fact that the conditioner number of A� (��krk)I is

less than that of A � �I can be explained by the well known fact that � converges faster than the residual

norm. Since j�

�

��j is less than krk, A��I is closer to singularity than A�(��krk)I . Because A�(��krk)I

is the dominant part of J

A

, J

C

and J

I

, reducing the conditioner number J

R

may lead to a reduction of their

condition number as well.

3.2.7 Characteristics of the Newton methods

Because of the equivalence properties, the Newton methods described actually belongs to two categories, the

Rayleigh quotient iteration and the augmented Newton method. When used as preconditioner, usually we
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i �

i

kr

i

k �

i

1 -6144041.085 10062581.84 577.8

2 -17016751.02 6701780.037 213.2

3 -21415222.33 2193673.55 1151

4 -23089128.21 402183.1026 1415

5 -23130707.73 37601.76191 1878

6 -23131028.49 403.1330178 1.815e+04

7 -23131028.52 0.0495892453 1.679e+06

8 -23131028.52 1.648623805e-08 1.365e+10

9 -23131028.52 1.228988946e-08 5.924e+16

Table 3.19: The intermediate solutions of RQI with biased shift on EX2.
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Figure 3.4: Condition numbers of the Jacobian matrix with biased shift on PLAT362.

only take one step of the Newton iteration, in which case, the augmented Newton method is equivalent to the

normalized augmented Newton method if the approximate eigenvectors are unitary. Thus all eigen-system

solvers of interests are variations of the Rayleigh quotient iteration. We have found six di�erent way of

implementing the Rayleigh quotient iteration which operate the following iteration matrices, J

R

, J

A

, J

O

,

J

I

, J

C

, and J

J

, see page 47. Out of these matrices, we have shown that J

I

, J

C

and J

A

are nonsingular near

convergence. The next lemma shows how the spectra of some of them are related to each other.

Lemma 3.8 For any vector y perpendicular to x, y

T

J

R

y = y

T

J

I

y = y

T

J

C

y = y

T

J

J

y.

Proof. If y is perpendicular to x, x

T

y = y

T

x = 0.

y

T

J

I

y = y

T

(A� �I + xx

T

)y = y

T

(A� �I)y = y

T

J

R

y:

y

T

J

C

y = y

T

(A� �I)y � y

T

xx

T

(A+A

T

)y = y

T

(A� �I)y:
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y

T

J

J

y = y

T

(1� xx

T

)(A� �I)(I � xx

T

)y = y

T

(A� �I)y:

2

In the limit where x is the exact eigenvector, this lemma shows that the spectrum of J

R

, J

I

, J

C

and

J

J

are only a simple sift of the spectrum of A except one eigenvalue corresponding to �

�

. In the case of

J

R

and J

J

, �

�

is translated to zero, i.e., they are singular. J

I

translates �

�

to 1. J

C

translates it to �2�

�

if the matrix A is Hermitian. Since J

A

is not of the same size as A, it is not easy to characterize how its

spectrum relates to that of A. We could image its e�ects is represented by J

I

because J

I

can be viewed as

an approximate Schur form of J

A

. In short, the new recurrences described here avoid singularity in their

Jacobian matrices by transforming the zero eigenvalue into a di�erent location.

We have addressed the problem of singular iteration matrix. Another problem is also addressed at the

same time is the Linear Dependent Basis problem, see page 30. By construction, the Newton-Olsen recur-

rence and the Jacobi-Davidson recurrence produce corrections that are orthogonal to current approximate

eigenvector x. Because of the connection to the Newton-Olsen scheme, the normalized augmented Newton

recurrence should also produce orthogonal corrections as well. The constrained Newton recurrence and the

inated Newton recurrence do not have this orthogonality. However, the problem should be less severe than

the original Davidson preconditioning scheme.

The properties of the iteration matrices near convergence are important. For practical use, the properties

of the Jacobian matrices far from convergence are as important. It is clear that the condition number of

A � �I is small when � is far from any eigenvalue. Therefore, J

R

is well-behaved far from convergence.

This fact can partly explain the success of the Davidson preconditioning scheme. Since a small modi�cation

can signi�cantly change the spectrum of a matrix, it is hard to quantify the behavior of other Jacobian

matrices analytically. We have seen one example where J

A

has large condition number far from convergence,

see �gure 3.3 or table 3.7. This indicates that the normalized augmented Newton method is more likely to

encounter di�culties than others. From �gures 3.2, 3.3, and 3.4, we see that the condition number of the

Jacobian matrices from RQI, the inated Newton recurrence and the constrained Newton recurrence are

close to each other far from convergence. The conditioner number of PLAT362 is about 10

11

. The condition

number of EX2 is about 10

10

. Compared with this numbers, the condition numbers of J

C

, J

I

, and J

R

are

remarkably small at the beginning of the Newton iterations, see �gures 3.2, 3.3 and 3.4.

3.3 Newton-type preconditioners

In the framework of algorithm 2.3, the ultimate purpose of preconditioning is to generate a good basis V

m

.

The Davidson preconditioning scheme mentioned above basically approximates the correction equation (3.2).

In this section we search for new preconditioning scheme by discussing di�erent ways of approximate the the

Newton recurrences described in the previous section.

The Rayleigh quotient iteration method is an e�ective method for �nd one eigenvalue and its eigenvector

[51, 93]. In order to build an eigen-system solver conform to the structure of algorithm 2.3, we can simply

de�ne V

m

to be a basis spanning fx

0

; x

1

; : : : ; x

m�1

g. For convenience of reference, we will call this basis the

Rayleigh quotient basis. Because the optimality of the Rayleigh-Ritz projection, the residual norm of the

solution found by the Rayleigh-Ritz projection on this Rayleigh quotient basis should be no greater than the

residual normal of the solution (�

m�1

; x

m�1

) from the Rayleigh quotient iteration. This simple observation

indicates that if we approximate the Rayleigh quotient iteration as preconditioner for the Davidson method, it

is possible to achieve cubic convergence rate for symmetric eigenvalue problems. The Davidson preconditioner

computes z � (A��I)

�1

r to augment the current basis. The Rayleigh quotient iteration based preconditioner

gives z � (A��I)

�1

x to augment the current basis. One might expect this second form of preconditioner to

perform better than the Davidson preconditioning because the observed di�culties related to the Davidson

preconditioning, see page 30. A small experiment indicates that the contrary is true, see table 3.20.

Table 3.20 contains the number of matrix-vector multiplications used to compute 5 smallest eigenvalues

and their corresponding eigenvectors of three diagonal matrices. The test matrices are from Harwell-Boeing

collection [37]. The three matrices used in this test are the three largest diagonal matrices in the collection,

see table 2.12. Diagonal matrices are used here because it is easy to invert the preconditioners. This small

52



preconditioner (A� �I)

�1

r (A� �I)

�1

x

BCSSTM21 12 25

BCSSTM24 28 78

BCSSTM25 31 107

Table 3.20: Number of MATVEC required to compute 5 smallest eigenpairs.

test indicates that the Davidson preconditioner is more e�ective. This is because (A��I)

�1

x is badly scaled,

and almost parallel to x.

Note that the Rayleigh quotient iteration has most of the problems we have observed in the Davidson

preconditioning, see page 30. This test shows that a Newton type of preconditioner is better suited to be a

preconditioner for the Davidson method. In the remaining of this section we discuss how to turn the other

Newton methods for eigenvalue problems into preconditioners for the Davidson method.

For all the Newton recurrence, it is very simple to modify the preconditioning step of the Davidson

method to use the New preconditioning scheme. In step 2.d.iii of algorithm 4.1, instead of solving z =

(diag(A)� �I)

�1

r, we simply compute

z = J

�1

r;

where J is one of the Jacobian matrices described in the previous section. Because of the equivalence

properties, if the above preconditioning step is solved exactly, we should expect cubic convergence with

these new preconditioning schemes.

Augmented Newton preconditioner. The nonzero structure of J

A

is a straightforward modi�cation

to the nonzero pattern of A. It should be easy to modify most of the incomplete factorization schemes

to factorized J

A

. Because we always have unitary approximate eigenvectors, the preconditioning step with

the augmented Newton preconditioner approximately computes J

�1

A

�

r

0

�

and discards the last element of the

solution. The exact form of this preconditioner is the normalized augmented Newton recurrence.

Olsen preconditioner. The simplest way of realizing the Olsen preconditioning scheme is to implemented

it as a driver over existing Davidson preconditioners. Denote the original preconditioner as (M � �I), and

let z

r

= (M � �I)

�1

r, z

x

= (M � �I)

�1

x. The Olsen preconditioning scheme computes

z = z

r

�

x

T

z

r

x

T

z

x

z

x

: (3.27)

In exact form, the above formula can be simpli�ed slightly as follows

z = (A� �I)

�1

r �

(A� �I)

�1

x

x

T

(A� �I)

�1

x

:

This leads to a modi�ed form of the Olsen preconditioning scheme,

z = z

r

�

z

x

x

T

z

x

: (3.28)

This new form is slightly simpler than equation (3.27), but its output is no longer orthogonal to x if M 6= A.

We know the the jacobian matrix of the Newton-Olsen scheme is singular. However, implementing this

scheme either use equation (3.27) or (3.28), the matrix J

O

is not directly used.

Inated Newton preconditioner. The Jacobian matrix for the inated Newton recurrence is J

I

=

A � �I + xx

T

. This matrix could be inverted through the Sherman-Morrison formula in which case it will

lead back to an approximate form of the Newton-Olsen recurrence. Since there is already two variations of

the Olsen preconditioning scheme, we will �nd a di�erent way of using J

I

. A Matrix-vector multiplication

with J

I

is not much more complex than a matrix-vector multiplication with A. This suggests that a matrix-

vector multiplication based preconditioner. Common preconditioners based on matrix-vector multiplications
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include polynomial preconditioners [6, 39, 149, 62, 113], Krylov based iterative solvers [10, 119], and approx-

imate inverse built by Krylov iterative solvers [24, 66]. Because polynomial preconditioners usually require

information about the spectrum of J

I

which is unlikely to be available, they are not as easy to use as the

other choices. Approximate inverse preconditioners are attractive because they can be e�cient in parallel

environment. However the algorithms for computing approximate inverses are not as widely available as

Krylov subspace methods. For simplicity, we will only use the Krylov iterative solvers, e.g., CG, GMRES,

to test this preconditioning scheme.

Constrained Newton preconditioner. Similar to the Inated Newton preconditioner case, the iteration

matrix J

C

of the constrained Newton recurrence is again a rank one modi�cation of J

R

. For a Hermitian

eigenvalue problem, multiplying the Jacobian matrix J

C

= A � �I � 2x(Ax)

T

by a vector can be easily

performed, because x and Ax are computed by the Davidson method in the process of computing the

residual vector. It is possible to design a special incomplete factorization method that factories J

C

without

explicitly computing the whole matrix. However the simplest option to approximate a constrained Newton

step is to use a Krylov subspace method as we have indicated in the inated Newton preconditioner case.

Jacobi-Davidson preconditioner. The iteration matrix in this case is J

J

= (I�xx

T

)(A��I)(I�xx

T

).

This matrix is more complex than J

C

and J

I

, the only practical option of using this matrix is to use

it in a matrix-vector multiplication. As before we have three choices, polynomial preconditioner, Krylov

iterative solver, and approximate inverse. Since the matrix J

J

is singular, the approximate inverse algorithm

need to compute an approximation of the pseudoinverse. How e�ective are current approximate inverse

algorithms in �nding a pseudoinverse approximation is an open question. Usually the Jacobi-Davidson

preconditioner is solved with Krylov iterative solvers. Because the right-hand side r is in the range of

J

J

, the approximate solution generated by Krylov subspace iterative solvers and polynomial methods are

essentially approximations to J

+

J

r.

In summary, we have three di�erent kinds of preconditioners, incomplete LU factorizations on J

A

, Olsen

preconditioning schemes, and iterative methods applied on linear systems with J

R

, J

I

, J

C

or J

J

.

3.4 Numerical Comparisons

This section contains a number of small examples to show how the di�erent preconditioning schemes work.

Due to the large number of possible implementations, it is not possible to cover every case. We have selected

to implement the following preconditioners

� Incomplete factorization of J

A

. We decided to test the potential bene�t of augmented Newton

preconditioner with two incomplete LU factorizations: ILU0, ILUTP [115]. ILU0 is an incomplete

factorization where the LU factors have the same nonzero pattern as the original matrix. ILUTP

modi�es ILU0 in three ways, (1) elements of LU factors with small absolute values are dropped, (2)

a maximum number of nonzero elements in a row of LU factors, i.e., level of �ll, is controlled by the

user, (3) column pivoting is performed if the diagonal element is signi�cantly smaller than another

element on the same row. The ILUTP used has the level of �ll equals to half of the average number of

nonzero elements per row plus one, in other word, the ILUTP factorization can be slightly larger than

ILU0. On average, this ILUTP allows one more nonzero elements in both L and U than that of ILU0.

Elements in the incomplete LU factor that is less than 3 � 10

�5

of the row norm are discarded, and

pivoting is performed if the absolute value of the diagonal element is less than 0:1 of the largest one in

the same row.

� Olsen preconditioners. As described before we have two di�erent implementation for the Olsen

preconditioner, see equations (3.27) and (3.28). In each case, one of the following three approximate

solution schemes is used to approximate (A� �I), the diagonal scaling, ILU0 and ILUTP.

� Iterative solvers. We have implemented CG and GMRES to work with J

R

, J

C

, J

I

, and J

J

. Two

di�erent kinds of tolerance schemes are used. First, a �xed number of matrix-vector multiplications and

a �xed residual tolerance are used, i.e., when either the residual norm of the linear system has reduced
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PLAT362 EX2

MATVEC time(sec) MATVEC time(sec)

(NONE) >5000 - 35 0.6

diagonal >5000 - 88 1.7

ILU0 >5000 - 63 15.4

ILUTP >5000 - 41 10.6

Table 3.21: Conventional preconditioners applied to PLAT362 and EX2.

PLAT362 EX2

MATVEC time(sec) MATVEC time(sec)

ILU0 >5000 - 525 19.8

ILUTP >5000 - >5000 -

Table 3.22: Augmented Newton preconditioners on PLAT362 and EX2.

below the tolerance, or the number of matrix-vector multiplications used is more than the maximum

speci�ed, the iterative solver is terminated. Second, a dynamic tolerance on both the residual and the

matrix-vector multiplication are used. Each time an iterative solver is called, the relative tolerance

is decreased by half until the minimum 10

�10

is reached. The maximum number of matrix-vector

multiplications increase by 10 every step in the �rst 20 calls, it only increase by 1 every time after the

20th call.

Our �rst set of tests is to apply Davidson method with above preconditioning scheme on the two test

matrices used in the previous section. The basis size for the Davidson method is 20. We seek 5 smallest

eigenvalues from each matrix with the same initial guess, [1; 1; : : : ; 1]

T

, for the eigenvector. In this experiment,

the tolerance on residual norm is set to 14 orders smaller than the matrix norm. The maximum number

of matrix-vector multiplications allowed is 5000. Note that this is a very large number compared with the

matrix sizes. The test is performed on a SPARC 10 running at 40MHz.

Table 3.21 shows the results of using some of the common preconditioners used for iterative linear system

solvers. We only used the Davidson method in this test. The preconditioners used here were also used in

Chapter 2, more information can be found there. It is hard to compute the smallest eigenvalues of PLAT362

because the smallest eigenvalues are clustered together. It is easy to �nd the smallest eigenvalues of EX2

because they are well separated. Matrix EX2 has more than 60 nonzero elements per row which makes

solving with ILU preconditioners signi�cantly more expensive than diagonal scaling. Even though the two

ILU preconditioners use signi�cantly less iterations to reach convergence than the diagonal preconditioning

case, they still use more time than the diagonal scaling preconditioner. Ironically, the unpreconditioned

Davidson uses the least number of matrix-vector multiplication and least amount time in this case.

Table 3.22 shows the results of using ILU factorizations on J

A

as preconditioners. Both preconditioners

were not able to help Davidson method to reach convergence faster. Not even one eigenvalue has reached the

residual norm requirement within 5000 matrix-vector multiplications for PLAT362. The Davidson method

with ILU0 on J

A

as the preconditioner was able �nd the �ve smallest eigenvalues of EX2. However it took

signi�cantly more matrix-vector multiplications and time than applying ILU0 on J

R

= A��I . This is largely

due to the zero diagonal elements in J

A

which makes it inde�nite. Part of this may be also attributed to

the fact that the condition number of J

A

can be large when x far from any eigenvector, see �gure 3.3. As

a preconditioner to the Davidson method, the ILU0 on J

A

works better than ILUTP on J

A

on the EX2

matrix.

Tables 3.23 and 3.24 show the results of using the two Olsen preconditioning schemes with three incom-

plete factorizations of (A��I). The Davidson method failed to �nd any eigenpair of PLAT362. Thus we are

only left to compare the result of EX2 with table 3.21. In this case, it is clear that the original Olsen scheme,

see equation (3.27), improves the e�ectiveness of the three incomplete factorizations, while the modi�ed

Olsen scheme, see equation (3.28), does not. This di�erence could be explained by the fact that the original
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PLAT362 EX2

MATVEC time(sec) MATVEC time(sec)

diagonal >5000 - 85 1.7

ILU0 >5000 - 40 10.2

ILUTP >5000 - 35 10.0

Table 3.23: The Davidson method with the Olsen preconditioning scheme.

PLAT362 EX2

MATVEC time(sec) MATVEC time(sec)

diagonal >5000 - 475 10.8

ILU0 >5000 - 355 21.2

ILUTP >5000 - 405 24.6

Table 3.24: The Davidson method with the modi�ed Olsen preconditioning scheme.

Olsen scheme produces a result that is orthogonal to the approximate eigenvector while the modi�ed form

does not produce a result with this orthogonality.

Table 3.25 shows some results of using the iterative linear system solvers as preconditioner. The maximum

number of matrix-vector multiplication the linear system solver can use is limit to 200. The residual tolerance

is set to be 1:6 � 10

�5

. In this case, we are able to �nd the smallest �ve eigenvalues for both PLAT362

and EX2. When the matrix A is symmetric, three out of the four Jacobian matrices, J

R

, J

I

, and J

J

, are

symmetric. The remaining one, J

C

, must be fairly close to be symmetric in most cases, because the table

shows that CG performs fairly well on it. For these reason, later on we will only use CG as the solver.

Comparing among the four di�erent preconditioners, the Jacobi-Davidson scheme uses the least amount of

time on PLAT362, the original Davidson scheme uses the least amount of time on EX2.

The contents of table 3.26 is similar to that of table 3.25, the di�erence is that a dynamic tolerance is used

on the linear system solvers. In most instances, the dynamic scheme reduced the number of Davidson steps

taken to reach convergence. But this achieved at the expense of using more matrix-vector multiplications in

the preconditioners. Comparing table 3.26 and 3.25 we see that this trade-o� often leads to reduction of total

execution time and/or total number of matrix-vector multiplications. For example, in the �xed tolerance

case, the execution time with CG on J

R

as preconditioner takes 137.6 seconds to reach convergence for

PLAT362, in the dynamic tolerance case, it reduces to 111.3 seconds.

PLAT362 EX2

MATVEC MATVEC time MATVEC MATVEC time

(Davidson) (total) (sec) (Davidson) (total) (sec)

A� �I

CG 466 84248 137.6 155 2223 12.1

A� �I + xx

T

CG 506 91487 159.0 178 2742 15.2

A� �I � 2x(Ax)

T

CG 475 86075 149.2 162 3076 16.5

GMRES(10) 2669 483160 1193.4 165 5062 29.9

(I � xx

T

)(A� �I)(I � xx

T

)

CG 162 29562 58.7 485 83976 510.5

Table 3.25: Using iterative solvers with �xed tolerance as preconditioners to solve PLAT362 and EX2.
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PLAT362

MATVEC MATVEC time

(Davidson) (total) (sec)

A� �I 250 69176 111.3

A� �I + xx

T

261 73498 126.0

A� �I � 2x(Ax)

T

270 77049 131.5

(I � xx

T

)(A� �I)(I � xx

T

) 285 35722 72.5

EX2

MATVEC MATVEC time

(Davidson) (total) (sec)

A� �I 55 1329 6.4

A� �I + xx

T

58 868 4.7

A� �I � 2x(Ax)

T

55 863 4.7

(I � xx

T

)(A� �I)(I � xx

T

) 485 92159 559.7

Table 3.26: Using CG with dynamic tolerance as preconditioner to solve PLAT362 and EX2.

3.5 Summary

In this chapter we discussed a number of Newton methods for eigenvalue problem. Through the discussion we

identi�ed pros and cons of the Davidson preconditioning scheme in connection to the correction equation. In

order for the correction equation to generate nontrivial solution, we need to use the pseudoinverse. Computing

the pseudoinverse is an impossible task in most large scale applications. However, an approximate solution

can be reached through Krylov subspace methods if the linear system is consistent. Since the iteration

matrix (A� �I) is usually not exactly singular, the Jacobi-Davidson preconditioning scheme forces it to be

singular by explicitly orthogonalization. From a small number of experiments we have conducted, it appears

that simply applying an iterative method on (A��I) could work just as well as the Jacobi-Davidson scheme

in some cases.

The correction generated by solving the correction equation with pseudoinverse is orthogonal to the

exact eigenvector. The Olsen preconditioning scheme was designed explicitly to have this property. This

orthogonality is apparently important to the success of the Olsen scheme. We tested a theoretically equivalent

form of Olsen scheme which does not enforce this orthogonality property, see equation (3.28). The test results

clearly indicate that the original Olsen scheme is more e�ective, see table 3.23 and 3.24.

The thrust of this chapter is to �nd a Newton iteration with a nonsingular Jacobian matrix in order

to avoid the di�culty of operating with a ill-conditioned linear system for preconditioning. We identi�ed

6 recurrences which could be considered as Newton methods for eigenvalue problems. Out of the 6, the

augmented Newton method, the Jacobi-Davidson recurrence and the Newton-Olsen recurrence have been

published before. The rest seems to be new methods. Even though the Jacobi-Davidson recurrence and the

Newton-Olsen recurrence are not new, we presented them from a di�erent point of view and proved their

equivalence to the Rayleigh quotient iteration. A normalized augmented Newton method is derived through

a simple modi�cation to the augmented Newton method which is also equivalent RQI because it is simply

a di�erent implementation of the Newton-Olsen recurrence. Among the various Jacobian matrices, we have

identi�ed 3 of them, namely J

A

, J

C

, and J

I

, to be nonsingular near convergence. When the Ritz pairs are

not close to any eigenpairs, our experiments show that J

R

, J

C

and J

I

tend to have fairly small condition

numbers.

We have implemented a number of the preconditioners and conducted a small number of tests on them.

The experiment reveals that using CG to solve the Newton recurrences as preconditioners performs well

compared to other schemes.
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Chapter 4

Practical Davidson Algorithm

In previous chapters, we identi�ed the Arnoldi method and the Davidson method to be the most promising

eigen-system solvers for our application among the methods compared. The overall objective of this study is

to construct a preconditioned eigen-system solver, how well a method works with preconditioner is important

to us. Compared with the di�erent variations of the Arnoldi method, the Davidson method is usually

better in taking advantage of preconditioners. Though we will not completely abandon other possibilities,

the primary focus of this chapter is to discuss practical issues related to enhancing the performance of

the Davidson algorithm for symmetric eigenvalue problems. In the implementation of di�erent eigenvalue

methods, the techniques discussed here will be applied to all methods wherever applicable, not just to the

Davidson method.

Briey, the eigenvalue problems we are facing have the following characteristics. The matrices are large,

sparse and Hermitian. For the moment we will only consider real matrices, therefore the matrices are

symmetric. These matrices are not stored explicitly because the eigen-system solvers under consideration

only need to access them through matrix-vector multiplications which can be conveniently performed with

the matrix stored in compact forms. In addition, cheap and e�ective preconditioners can be constructed for

the problem without direct reference to the matrices. A typical eigenvalue problem might require the solution

of a few hundred of the smallest eigenvalues and corresponding eigenvectors of a 100,000 � 100,000 matrix.

Several sequences of eigenvalue problems may be solved in one simulation, where di�erences between two

consecutive matrices diminish toward the end of each sequence. This makes the solution of the proceeding

eigenvalue problem a good initial guess for the next one. Therefore, the eigenvalue solver should be able to

take advantage of available initial guesses.

There are many issues which need to be addressed in constructing a practical Davidson eigen-system solver

[31, 32, 137], many of which have been discussed in a review paper by Davidson [31]. Here we will only add a

few remarks on some recent work that have strongly inuenced our research. One focal point of our research

is the preconditioning issue which has been reviewed in previous chapter. Another signi�cant development

in eigenvalue methods is the restarting techniques. Recent introduction of the Implicit Restarted Arnoldi

(IRA) method has sparked renewed interest in restarting. Two restarting schemes for the Davidson method

are of particular of interests here [86, 134]. The �rst one is due to Murray and colleagues, which saves Ritz

vector of previous iteration in addition to the latest Ritz vectors [86]. The second one, called dynamic thick

restart, is from Stathopoulos and co-authors. It dynamically decides the number of Ritz vectors to save

when restart. Both of these schemes have been proven to work well in tests. We will study how will they

work in computing a large number of eigenpairs. The computing environment has changed signi�cantly since

the introduction of the Davidson method. Part of this change is the emergence of parallel computers. There

are a number of references on parallel and distributed Davidson method [40, 136]. Many issues related to

parallel implementation are not unique to the Davidson eigenvalue method, there are many publications

devoted to parallel and distributed computing issues which address a number of important aspects of a

parallel Davidson method. The publications that are most directly related to our work are, [57, 107] on

overall program structure for sparse computation, [99, 108] on matrix-vector multiplications design, and

[117, 146] on parallel preconditioning.

The particular issues most important to our application includes how to compute a large number of
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N NNZ Eigenvalues

Si

2

1939 57289 15

Si

4

4451 165385 30

Si

6

7949 295099 60

Table 4.1: Size of the test problems.

eigenpairs e�ciently, how to maintain a good orthonormal basis when there are many vector to orthogonalize,

and how to restart. This chapter will address these issues one by one.

To test the techniques numerically, we will use a set of three small test matrices generated from the

electronic structure simulation project, see table 4.1. These three matrices are generated from the �rst self-

consistent iteration in the simulation of a two-silicon cluster Si

2

, a four-silicon cluster Si

4

, and a six-silicon

cluster Si

6

. The wave-function is taken to be zero, 6.8 atomic units away from the atoms. The core radius

for nonlocal interaction is 2.8 atomic units, and the grid size is 1 atomic unit [60]. Table 4.1 shows the size

of the matrices extracted and the number of eigenvalues to be computed. The average number of nonzero

elements per row ranges from 29.5 for Si

2

to 37.2 for Si

6

. For larger problems, we expect this average to be

slightly above 37. The number of eigenvalues to be computed here is much more than needed to simulate

structures indicated. However the ratio of eigenvalues over the matrix size is close to typical applications,

see table 1.1. An eigenpair is considered converged if its residual norm is less than 10

�6

. The maximum

number of matrix-vector multiplications allowed is 100 per eigenpair. On average less than 30 matrix-vector

multiplications are needed per eigenpair in most of our simulations, so this is a reasonable upper bound.

In all experiments, the maximum basis size is limited to 20. Unless otherwise speci�ed, 10 Ritz vectors

corresponding to 10 smallest Ritz values are kept for restarting.

4.1 Program structure

After reviewing the basic operations performed in the eigenvalue methods considered, we noticed that they

have the same basic blocks identi�ed for Krylov linear system solvers [107]. They are

SAXPY, dot-product, matrix-vector multiplication, preconditioning.

To simplify the transition from a scalar program to a parallel program, we implement our eigenvalue

routines in the Single-Program Multiple-Data (SPMD) paradigm [68]. Each long column vector is divided

evenly among the processors if there is more than one. Excluding the matrix-vector multiplication and the

preconditioner, the only di�erence in the body of the eigen-system solvers between a scalar version and a

parallel version is the dot-product, � = x

T

y [107]. In the parallel program, the dot-product can be performed

in two step, �rst �nding the dot-product of components of the long vectors that are on the same processor,

then add up the partial sums from di�erent processors and return the result to everyone. This second step

is called a global sum. On most distributed environment the global sum is supported as one of the primitive

functions. The global sum operation is often considered as an expensive operation, because all processors

involved have to wait for each other. If one processor is lagging behind for any reason, the rest of the

processors will be slowed down. To reduce the number of times the global sum operation is performed, a

number of the dot products may be lumped together, and their partial sums are communicated in one global

sum operation.

One of the central steps of the eigenvalue methods under consideration is the matrix-vector multiplication

operation. Before building a eigenvalue routine for sparse matrices, a decision has to be made on the storage

format of sparse matrices. Many sparse matrix storage formats exist [115], and in many cases, it is most

convenient to store the matrix in a specialized compact form, see Chapter 1. One method of isolating the

dependence of sparse matrix storage format from the eigenvalue routine is to use reverse communication

[57, 107]. Since the eigenvalue algorithms under consideration only need to access matrices through matrix-

vector multiplication, the reverse communication technique enables us to remove the e�ects of sparse matrix

storage format from body of the eigenvalue routine. This data-hiding feature is an important characteristic
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of Object-Oriented programming [140]. By removing the details of sparse matrix storage problem from the

body of the eigenvalue routine, it also signi�cantly simpli�es the implementation.

An additional advantage of using reverse communication is that the preconditioning step can performed

outside of the core of the eigen-system solver as well. This gives us the exibility of switching between

arbitrary preconditioners which makes testing of preconditioners considerably easier.

With reverse communication, an eigen-system solver may return to the caller for one of three reasons:

termination, request for matrix-vector multiplication, or request for preconditioning. The reverse commu-

nication protocol we use is close to that of [107]. A parameter array ipar is used to carry the reverse

communication information between the eigenvalue routine and the caller. Here is a piece of pseudo-code

to demonstrate the design of the reverse communication protocol. The eigenvalue routine is named pesdvd,

the matrix-vector multiplications routine is matvec, and the preconditioner is preconditioning.

10 call pesdvd(..., ipar, ...)

if (ipar(1) == 1) then

call matvec(...)

goto 10

else if (ipar(1) == 3) then

call preconditioning(...)

goto 10

endif

Note that using 1 for matrix-vector multiplication and 3 for preconditioning is exactly the same as the

design of P SPARSLIB [107].

4.2 Computing large number of eigenvalues

The application of interests requires large number of eigenpairs, it is crucial for the eigen-system solver to

be able to �nd a large number of eigenpairs e�ectively. This is a major issue we will address now.

There are a number of guidelines for considering solution to this problem. First, the workspace size

should be independent of the number of eigenvalues wanted. Second, all initial guesses provided should be

fully utilized. One technique that is most important to realizing these two requirements is called locking.

When computing a large number of eigenpairs, some of them will reach convergence earlier than others.

The process of taking the converged ones out of the working set is referred to as locking. Once the converged

ones are taken out, their corresponding eigenvectors are used in the orthogonalization procedure to make sure

the active basis vectors are perpendicular to them. This is part of step 1 in algorithm 2.6 which orthogonalize

the new vector to converged eigenvectors and existing basis vectors. Let m be the basis size, and p is the

size of the working set of approximate eigenpairs. If the size of the working set is small, say, p = 5, it is

possible to keep m relatively small, say m = 20, therefore requiring only a small work space. Once some of

the p Ritz vectors reach convergence, they are taken out of the working set and new initial guess are put

into the working set to replace the converged ones. This process repeats until enough eigenpairs are found.

In the Davidson method, at least one residual vector is computed at every step. Let V denote the

basis vectors computed by the Davidson method. If the basis size m is small, it is often necessary to save

W � AV in memory, and compute the residual vector as r = V y� �Wy where (�; y) is an chosen eigenpair

of H � V

T

AV . In this case, only one matrix-vector multiplication is required to compute the Ritz pair and

its residual vector after a new vector is added to the basis. If the basis size is large, computing Wy may be

more expensive than perform a matrix-vector multiplication, in which case two matrix-vector multiplications

per step would be used, one to compute a column of V

T

AV , one to compute the residual.

Without locking, it would be necessary to keep all the converged eigenvectors in the basis as in [137].

The advantage of this scheme includes the larger basis size which could lead to faster convergence in some

cases. In addition, the accuracy of eigenpairs converged earlier will be improved continuously which lead to

smaller residual norms on some eigenpairs. In the type of eigen-systems of interest, the number of eigenpairs

wanted is exceedingly large, say, 1000, which makes locking a necessity. Maintain orthogonality among 1000

vectors is a di�cult task. Perform Rayleigh-Ritz projection on a basis of size 1000 is expensive both in terms
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of memory requirement and arithmetic operation count. Because the basis size is so large, it is impractical

to save AV . In this case, two matrix-vector multiplications are needed at every iteration of the Davidson

method. In the distributed environment, the matrix-vector multiplication is the communication intensive

operation. Using two matrix-vector multiplications per step is not a desirable option.

Another alternative could be that we keep work on all the unconverged eigenpair at once and lock the

converged ones as they become ready. This was suggested in [31]. One advantage of this alternative is that

the basis can be stored in the same space reserved to store the eigenvectors. Since the number of eigenvectors

wanted is very large, the basis size may be too large initially. If less than a few hundreds of eigenpairs are

wanted, then it is possible that the advantage of working with larger bases out-weigh the disadvantages.

Because we design our program to compute more than a thousand eigenpairs, we have not favored this

option.

If a group of eigenvectors is being processed, then a group of initial guesses is available at the start of the

Davidson iterations. We could use a block version of the Davidson method, for example the Davidson-Liu

variant [32]. However the block version is often not the most e�ective approach [31]. In addition, the number

of vectors in the working set is usually too large to use as block size, see discussion about the block size

in section 4.6. In [31], it was suggested that the basis V should be extended one vector at a time. The

following algorithm takes all of these issues into consideration and makes two additional modi�cations to

algorithm 2.5.

� It starts to build the basis V with b

0

starting vector, see also algorithm 2.6,

� it computes more than one Ritz pair in the Rayleigh-Ritz procedure. In the following algorithm it is

referred to as the active window size, p.

Both of these modi�cations were mentioned in [31]. The following algorithm combines them to compute a

large number of eigenpairs by working on a small active set at a time.

Algorithm 4.1 Restarted Davidson's algorithm for �nding the d smallest eigenvalues and correspond-

ing eigenvectors, �

i

; x

i

; i = 1; : : : ; d, of a symmetric matrix A.

1. Start. Choose d initial vectors, x

1

; x

2

; : : : ; x

d

. Choose the active window size p to be an integer less

than m, say p = m=4. Let c = 0.

2. Iterate to build an orthonormal basis V

m

= [v

1

; v

2

; : : : ; v

m

] that is orthogonal to X

c

� [x

1

; x

2

; : : : ; x

c

],

where c is the number of eigenpairs converged.

Fill array Z with �rst p available unconverged eigenvectors. If there are less than p eigenvectors left,

reduce p to the actual number of eigenvectors remained. Choose an initial basis size b

0

, �ll columns

p + 1 to b of Z with Ritz vectors of previous iteration if available. Let b to be the actual number of

column vectors in Z. Let j = 0.

(a) Orthogonalization.

Z = (I � V

j

V

T

j

�X

c

X

T

c

)Z;

QR = Z;

[v

j+1

; : : : ; v

j+b

] = Q:

(b) w

i

= Av

i

; i = j + 1; : : : ; j + b.

(c) h

ik

= v

T

i

w

k

, for i = 1; : : : ; k; k = j + 1; : : : ; j + b.

j = j + b, b = b

1

.

(d) if (j < m) then perform preconditioning,

i. compute the smallest eigenvalue and corresponding eigenvector of H

j

= V

T

j

W

j

, say, �; y.

ii. r =W

j

� y � �V

j

� y, where V

j

= [v

1

; : : : ; v

j

], W

j

= [w

1

; : : : ; w

j

].

iii. Z = (diag(A) � �I)

�1

r.
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Arnoldi Orthogonalized Davidson Harmonic

d MATVEC time MATVEC time MATVEC time MATVEC time

15 504 139.7 485 149.4 443 152.6 484 209.2

30 1519 491.8 1289 454.2 1246 490.7 1409 713.6

60 5399 2143.6 5049 2182.5 3856 1802.1 5219 3395.9

Table 4.2: Finding di�erent number of eigenvalues from Si

6

matrix.

Arnoldi Orthogonalized Davidson Harmonic

MATVEC time MATVEC time MATVEC time MATVEC time

15!30 3.0 3.5 2.7 3.0 2.8 3.2 2.9 3.4

30!60 3.6 4.4 3.9 4.8 3.1 3.7 3.7 4.8

15!60 10.7 15.3 10.4 14.6 8.7 11.8 10.8 16.2

Table 4.3: Increase in MATVEC and time versus increase in number of eigenvalues.

iv. Goto 2.a.

else continue to next step.

3. Rayleigh-Ritz procedure. Let H

m

= (h

ij

)

m�m

, �

i

, i = 1; : : : ; p, be the p smallest eigenvalues of

H

m

, y

i

be the corresponding eigenvectors, i.e., H

m

y

i

= �

i

y

i

. Let Y = [y

1

; : : : ; y

p

],

V

p

= V

m

Y; W

p

=W

m

Y; H

p

= diag(�

1

; �

2

; : : : ; �

p

): (4.1)

The new approximation to the eigenvalue and the eigenvectors are,

�

c+i

= �

i

; i = 1; : : : ;min(p; d� c);

x

c+i

= v

i

;

r

c+i

= w

i

� �

c+i

x

c+i

:

4. Convergence test.

If kr

c+1

k < � , increment c by 1 and test next Ritz pair.

If c < d, return to step 2.

This algorithm computes d eigenvalues by working on p of them at a time which is an extension to what

is proposed in [31], where the algorithm would only compute p eigenvalues. It should be trivial to extend

the Arnoldi method or any other eigenvalue method mentioned in the previous chapter to compute large

number of eigenpairs in a similar fashion.

In the Rayleigh-Ritz procedure of the above algorithm, we order the eigenvalues of H

m

from small to

large. In which case, the p smallest eigenvalues are simply the �rst p eigenvalues. If the eigenvalues are in

descending order instead, the above procedure can be used to compute the largest eigenvalue. Similarly, if

the eigenvalues of H

m

are ordered according to the distance from a given number, the above algorithm can

be used to compute eigenvalues around that chosen number.

Table 4.2 shows the number of matrix-vector multiplications and execution time of four di�erent eigen-

value methods namely the Arnoldi method, the orthogonalized Arnoldi method, the Davidson method and

the harmonic Davidson method, see Chapter 2 for more detailed description. The MATVEC column shows

the number of matrix-vector multiplications used. The time column shows the execution time in seconds.

Only the Si

6

matrix is used in this test. No preconditioning is used. Other parameters used are as follows,

m = 20; p = 5; b

0

= 10; b

1

= 1:
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Arnoldi Orthogonalized Davidson Harmonic

MATVEC time MATVEC time MATVEC time MATVEC time

No preconditioning

Si

2

512 29.4 434 27.2 334 24.6 443 58.1

Si

4

1429 243.2 1400 262.7 1177 240.3 1399 482.9

Si

6

5399 2143.2 5049 2182.5 3856 1802.1 5219 3395.9

Diagonal scaling

Si

2

1164 82.1 1494 118.8 627 54.8 1134 126.4

Si

4

2719 492.1 -25 583.6 1778 392.7 2779 791.6

Si

6

-51 2277.7 -42 2325.9 5064 2367.7 -51 3497.5

SOR preconditioner

Si

2

-7 145.7 944 104.2 244 43.1 -8 1005.5

Si

4

-15 787.4 1929 597.4 573 266.3 -15 7170.7

Si

6

-28 3047.4 4069 2573.7 1497 1221.0 -32 26871.5

ILU0 preconditioner

Si

2

-4 165.7 -6 175.3 685 107.8 -7 966.7

Si

4

-7 850.6 -6 839.1 -20 1076.6 -11 7375.0

Si

6

-15 3132.3 -12 3091.1 -38 4318.9 -22 29063.7

Table 4.4: The eigenvalue routines with di�erent preconditioning.

On average, when the number of eigenvalues doubles, the number of matrix-vector multiplications in-

creases about 3{4 times, the CPU time increases about 3{5 times, see table 4.3. Overall, the increase in

time and matrix-vector multiplications is slower for the Davidson method compared to the other three. It

is interesting to note that the Arnoldi method uses the least amount of time to compute 15 eigenvalues, the

orthogonalized Arnoldi method uses the least amount of time to compute 30 eigenvalues, and the Davidson

method uses the least amount of time to compute 60 eigenvalues. Since no preconditioning is used, the four

methods shown in table 4.2 are equivalent to each other. Because the Arnoldi method is the least expensive

per step, it usually uses the least amount of time to execute the same number of steps. When the number

of eigenpairs wanted is small, there are less opportunity for round-o� errors to erode the stability of the

Arnoldi method. Thus the number of steps taken by the Arnoldi method and others are almost the same. In

this case, the Arnoldi method will use less time to compute the same solution. The orthogonalized Arnoldi

method is more expensive and numerically more stable than the Arnoldi method. In turn, the Davidson

method is more expensive than the orthogonalized Arnoldi method and even resistant to round-o� errors

which might impede the convergence. When computing 60 eigenpairs, the Davidson method uses signi�cantly

less matrix-vector multiplications than other three. This test indicates that as we increase the number of

eigenvalues computed, the Davidson method becomes more competitive compared with the Arnoldi method.

Table 4.4 shows how the eigenvalue routines work with di�erent preconditioners. The maximum number

of matrix-vector multiplication 100 per eigenpair. If the MATVEC column has a negative number it indicates

the method did not reach convergence on all wanted eigenvalues within the allowed number of matrix-vector

multiplications. The absolute value of the number in the cell indicates the number of eigenvalues actually

converged. The corresponding time column is the time used. For example, with SOR preconditioner, the

Arnoldi method computed only 28 eigenpairs of the Si

6

matrix using 6000 matrix-vector multiplications. The

corresponding time, 3047.4 seconds, is the time taken to computed these 28 eigenpairs. In every case where

more than one method reached convergence, the Davidson method uses less time than the others. The results

in this table mirrors what we have observed with the Harwell-Boeing test matrices in the previous chapter.

The preconditioners do not improve the performance of the eigen-system solvers except the Davidson method.

Even for the Davidson method only the SOR preconditioner uses less time on the Si

6

case compared to the

unpreconditioned case. A better preconditioner is necessary for this type of eigenvalue problems.
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4.3 Restarting

The Lanczos method, the Arnoldi method and the Davidson method all require restarting after a certain

number of steps. The same reasons will also require restarting of algorithm 4.1, because as the number of

steps increases, the space required to store V

j

increases proportionally. This creates many di�culties, such as,

storage problem, and loss of orthogonality. As j increases, the complexity of Gram-Schmidt orthogonalization

procedure increases as O(nj

2

). The complexity of performing both Rayleigh-Ritz projection and harmonic

Ritz projection increase as O(j

3

). For these reasons, the maximum basis size is usually very small. In most

cases, the maximum basis size we use is only 20 or 30.

The restarting issue has been addressed in many papers [31, 70, 150]. One natural choice is to start

with Ritz vectors. This is what is done in algorithm 4.1. In [31], Davidson suggested that one should save

more than d Ritz vectors if d eigenvectors are sought. Exactly how many was a question left unanswered.

Observations of the convergence properties of the Conjugate Gradient method motivated the authors of [150]

to save the Ritz vectors from the last two steps as the initial guesses. This scheme is quite successful in some

cases. A relatively new scheme named \Implicit Restarting" due to Sorensen restarts with a set of Schur

vectors rather than Ritz vectors [131]. One advantage of using Schur vectors instead of Ritz vectors is that

Schur vectors always exist even for defective matrices but Ritz vectors do not. In addition, Schur vectors

can be real in case the matrix has complex eigenvalues or eigenvectors. Both of these advantages are only

applicable if the matrix is nonsymmetric. In the symmetric or Hermitian case, a Schur vector di�er from a

Ritz vector only by a scalar constant [83]. For this reason, only Ritz vectors are considered for restarting in

the symmetric case.

Before discussing the details of our restarting scheme, we review guidelines for restarting.

� The �rst and most important requirement on restarting scheme is that the quality of the approximate

solution should not decrease after restarting. For Hermitian eigenvalue problems, residual norm is a

good measure of the quality of approximation, in which case, the residual norm should not increase

after restarting. The simplest way of achieving this is to include the latest Ritz vectors in the basis,

see algorithm 4.1 and [137].

� Preserve the Ritz vectors near the wanted eigenvectors at restart. This was suggested as a feature

for the Davidson method [31]. A formal justi�cation for this technique on the Arnoldi method was

given by Morgan [83]. Keeping Ritz vectors with Ritz values close to the desired one has the e�ect

of increasing the separation between the wanted eigenvalue and the rest of the spectrum, therefore

increasing the convergence rate. A variation of this scheme saves Schur vectors instead of the Ritz

vectors is implemented in ARPACK [129].

� Preserve enough information to prevent repetition. Without preconditioning, many eigenvalue methods

are essentially performing Rayleigh-Ritz projection on an orthonormal basis generated from a power

series. These methods always favor the extreme eigenvalues, if some Ritz vectors corresponding to

extreme eigenvalues are discarded, they will likely to reappear. Thus one technique for avoiding

repetition is to keep the Ritz vectors corresponding to the extreme eigenvalues in the basis. In [72], a

technique for preserving unwanted eigenvectors is discussed. In the linear system case, the Augmented

Krylov subspace technique is based on the same principle [18, 106]. Based on the three-term recurrence

of the Lanczos method, Murray and co-authors suggest preserving Ritz vectors from an earlier iteration

can avoid repetition [86].

� Restart based on convergence predictions rather than heuristics, for example, the dynamic \thick

restart" scheme [134].

The intuition on the number of restarting vectors is that the more information saved the more likely

later iterations will not repeat the previous work; the more steps taken before restarting, the more new

information can be incorporated into the solutions, i.e., more accurate the next approximation solution will

be. In considering the restarting scheme, we assume the goal of the eigen-system solver is to make one

eigenpair converge at any given time. With this in mind, the question on what to do to restart includes two

components:
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1. how many nearby Ritz vectors to save?

2. whether or not to save the Ritz vector of previous iteration?

On the �rst question, until recently, the general guideline has been to keep all the Ritz vectors corresponding

to wanted eigenvectors plus a small number of near by ones [31, 129]. Recently, Stathopoulos and colleagues

proposed a dynamic scheme to determine the number of Ritz vectors to be saved [135]. The proposed scheme

is based on the observation that the saved Ritz vectors in the basis approximately deate the spectrum [83].

To determine how many Ritz vectors to save, the dynamic thick restarting scheme uses the Ritz values to

approximate the gap ratio after deation. Saving many vectors for restarting is called thick restart [135].

This section describes a modi�ed form of the dynamic thick restarting scheme.

To simplify the description, we will only describe the case where the smallest eigenvalue is wanted. It is

straightforward to extend this to the case where more than one eigenpair is sought or the largest eigenvalue is

needed. In [83], it was shown that the convergence rate of the thick-restarted Arnoldi method is approximated

proportional to  = (�

�

t+1

��

�

1

)=(�

�

n

��

�

1

) assuming �

�

1

is the smallest eigenvalue, �

�

n

is the largest eigenvalue,

and t is the number of nearby Ritz vectors saved at restarting. The super script � indicates they are exact

eigenvalues. Since the exact eigenvalues are unknown, the gap ratio  is approximated as follows

 � (�

t+1

� �

1

)=(�

m

� �

1

) (4.2)

where m is the basis size, i.e., the number of Ritz values computed by the Rayleigh-Ritz projection. In

this case, only the Ritz vectors corresponding to the t smallest Ritz values are saved. In [135], the authors

extended this to saving Ritz vectors corresponding to both the largest and the smallest Ritz values. If

t

L

Ritz vectors corresponding to the smallest Ritz values and t

R

Ritz vectors corresponding to the largest

Ritz values are saved at restart, the convergence rate of Arnoldi method is expected to be proportional to

 � (�

t

L

+1

� �

1

)=(�

m�t

R

+1

� �

1

). In [135] this estimate of the gap ratio is used to determine the optimal

t

L

and t

R

. This strategy can be used for all projection eigen-system solvers including the Davidson method

and the implicitly restarted Arnoldi method. The reduction in the number of matrix-vector multiplications

with this dynamic restart scheme is signi�cant in many cases.

If a total of t = t

L

+ t

R

Ritz vectors are saved for restarting, computing these t Ritz vectors from V

m

requires roughly 2tmn oating-point operations, or FLOP for short. Note that n is the dimension of the

vectors. We represent this step by V

t

(= V

m

Y , where Y contains the selected eigenvectors of H

m

. To

avoid matrix-vector multiplications, we can also recombine columns of W

m

to form the �rst t columns of

W

t

= AV

t

, W

t

(=W

m

Y . This again requires about 2tmn FLOP. The residual vector corresponding to the

smallest Ritz value needs to be computed for testing convergence which needs about 4n FLOP. The total

oating-point operation count for extending the basis size from t to m is about

m�1

X

j=t

(10j + 6)n;

excluding the matrix-vector multiplications and preconditioning operations. The average FLOP count per

step is about

4(mt+ 1)n

m� t

+ 5(m+ t)n+ n+ op(A) + op(M); (4.3)

where op(A) denote the operation count in a matrix-vector multiplication and op(M) denotes the operation

count in a preconditioning operation. Based on equation (4.2), the larger t is, the faster the eigenvalue

method will converge. However the larger t is, the more expensive an average Davidson iteration is. To

achieve convergence in the shortest amount of time, it is necessary to balance the two factors.

Note that when t is close to m, the estimated  by equation (4.2) becomes invalid. However, since the

dynamic scheme is shown to be e�ective by numerical tests, we will continue to use this formula [135]. One

slight modi�cation to equation (4.2) is that instead of use �

m

computed at the current step, the maximum

of all �

m

ever computed is used. This modi�cation makes the  computed slightly closer to the actual gap

ratio.

When restarting to build a new basis, if it is not the �rst time step 2 is entered, there is a signi�cant

amount of information not utilized in Algorithm 4.1. For example, the vectors in V are orthonormal, so it
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Arnoldi Orthogonalized Davidson Harmonic

MATVEC time MATVEC time MATVEC time MATVEC time

gap ratio only

Si

2

314 52.7 307 50.8 306 54.4 331 64.2

Si

4

1154 433.7 1240 483.7 1095 439.8 1367 595.8

Si

6

4470 3711.9 4657 4014.9 5351 4315.9 4958 4912.8

gap ratio and work

Si

2

600 27.3 508 24.8 351 21.8 -2 109.3

Si

4

2153 319.1 2131 347.0 1582 291.3 -1 549.1

Si

6

-53 2043.9 -52 2195.2 5427 2291.0 -6 2201.4

Table 4.5: E�ects of dynamic restarting on the test problems.

is not necessary to orthogonalize them again. If no Ritz pair reached convergence in the previous iteration,

there are p Ritz vectors at the beginning of array V , see step 3. If the �rst p columns of V do not need

to go through the orthogonalization step, then the corresponding columns of W need not undergo step 2.b

either. Similarly, step 2.c can be skipped because step 3 has put the appropriate data in H . If some Ritz

pairs reached convergence, we could place the unconverged Ritz vectors at the beginning of V , and permute

W and H to avoid performing step 2.a{2.c on these unconverged Ritz vectors.

Table 4.5 shows the results of the two dynamic restarting schemes applied to the test problems. The

upper half of the table shows the results of using the dynamic thick restart. Generally speaking, this scheme

based on gap ratio tends to decrease the total number of matrix-vector multiplications required. It does so

by saving most of the Ritz vectors when restarting. In fact, a upper bound on the thickness t is needed to

prevent it from become m. For example, if the basis size is 20, this dynamic scheme doesn't allowed more

than 17 Ritz vectors to be saved. Most of the time, this scheme will save the maximum allowed number of

Ritz vectors. This method is expensive because recombining the basis to form a large number of Ritz vectors

is an expensive operation.

The second scheme we implemented tries to �nd the maximum value for the following quantity

( � log(FLOP=n))

where FLOP refers to equation (4.3). Table 4.5 shows that this new scheme generally uses more matrix-

vector multiplications than the �xed restarting scheme and the dynamic thick restart from [135]. Because

it restarts with fewer Ritz vectors it is less expensive per matrix-vector multiplication than the other two.

From the table we can see that even though more matrix-vector multiplications are needed, it still uses less

time in many case.

Comparing table 4.5 with the unpreconditioned case in table 4.4, we notice that the dynamic scheme

reduces the total execution time in the Si

2

case, but in the Si

6

case, the �xed-size thick restart scheme uses

less time than both dynamic restarting schemes in computing 60 eigenpairs.

The previous Ritz vector is appended to the regular Ritz vectors saved for restarting if it is used. For

example, if the restarting scheme decides to save 10 Ritz vectors, the Ritz vector of the previous step is

appended as the 11th vector in V . Let y

�

be the eigenvector of H

m�1

corresponding the smallest eigenvalue

of H

m�1

. This 11th vector is V

m�1

y

�

.

When the old Ritz vector is used in the basis, this old Ritz vector is not orthogonal to the p new Ritz

vectors. A fairly inexpensive way of ensuring the new basis is orthonormal is to ensure that [y

1

; : : : ; y

p

]

is orthogonal to y

�

. Since y

�

has one element less than y

1

; : : : ; y

p

, we need to augment y

�

to the same

size as the others. After this, the Gram-Schmidt procedure can be applied to make

�

y

�

0

�

orthogonal to

[y

1

; : : : ; y

p

]. One characteristic of this orthogonalization worth mentioning is that it is performed on a

short vector, in other word, it is inexpensive. In addition, no data communication is necessary in distributed

computing environments. Denote the resulting vector by y

a

, y

a

= (I�Y

p

Y

T

p

)

�

y

�

0

�

=�, where Y

p

= [y

1

; : : : ; y

p

],

� = k(I �Y

p

Y

T

p

)

�

y

�

0

�

k. This vector can be append to Y

p

and used in step 3 of algorithm 4.1 as if p has been

incremented by 1. V

p

and W

p

in equation (4.1) can be computed as follows,

V

p+1

= V

m

[y

1

; : : : ; y

p

; y

a

]; W

p+1

=W

m

[y

1

; : : : ; y

p

; y

a

]:
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Arnoldi Orthogonalized Davidson Harmonic

MATVEC time MATVEC time MATVEC time MATVEC time

thick restart

Si

2

512 29.5 434 27.2 334 24.5 -3 133.2

Si

4

1429 242.3 1400 262.7 1177 238.9 -3 665.4

Si

6

5419 2140.9 5049 2169.1 3856 1786.7 -3 2466.9

dynamic restart { gap ratio

Si

2

314 43.9 307 41.4 306 46.7 -4 256.3

Si

4

1152 365.3 1255 417.7 1080 384.1 -11 1182.8

Si

6

5140 3677.1 4708 3489.2 5335 3806.4 -16 4575.6

dynamic restart { gap ratio and work

Si

2

600 27.3 508 24.7 351 22.1 -2 109.3

Si

4

2153 320.2 2131 348.0 1582 295.0 -2 558.9

Si

6

-53 2076.1 -52 2228.8 5427 2311.1 -6 2228.3

Table 4.6: E�ects of saving previous Ritz vector on the test problems.

By de�nition, H

p+1

= V

T

p+1

AV

p+1

, since the �rst p vectors in V are Ritz vectors, the corresponding part of

H

p+1

is diagonal, only the last column needs special attention. Let v

p+1

= V

m

y

a

, where V

p

denotes the �rst

p columns of V

p+1

, the �rst p elements of the last column of H

p+1

is

V

T

p

Av

p+1

= Y

T

p

V

T

m

AV

m

y

a

= Y

T

p

H

m

y

a

=

0

B

@

�

1

.

.

.

�

p

1

C

A

Y

T

p

y

a

= 0:

Thus the matrix H

p+1

is also diagonal, the last diagonal element is a Rayleigh quotient of v

p+1

, �

p+1

=

v

T

p+1

Av

p+1

= y

T

a

H

m

y

a

.

Table 4.6 shows the results of saving one previous Ritz vectors in addition to the normal restarting scheme.

No preconditioning is used here in this test. In many cases, the same number of matrix-vector multiplications

are needed with previous vector compared to not using the previous Ritz vector. The observation here is that

the previous Ritz vector does not help the type of eigenvalue problem of interest. This could be explained as

the high-end of the spectrum is not signi�cantly easier to compute than the smallest ones. For example, to

compute the 15 largest eigenvalues of Si

2

, it takes the Davidson method 213 matrix-vector multiplications

which is about two thirds of the number of matrix-vector multiplications needed to compute 15 smallest

eigenvalues. Thus the discarded Ritz vectors corresponding to the largest eigenvalues will not emerge very

quickly.

4.4 Orthogonalization

The most straightforward way of implementing the orthogonalization step of the eigenvalue algorithm 4.1 is

the Classic Gram-Schmidt (CGS) procedure.

Algorithm 4.2 The classic Gram-Schmidt procedure to make a new vector z orthogonal to an or-

thonormal set of vectors [v

1

; v

2

; : : : ; v

j

].

1. c = [v

1

; v

2

; : : : ; v

j

]

T

z;

2. z = z � [v

1

; v

2

; : : : ; v

j

]c.

This algorithm is simple, but experience shows that it is not very stable [51]. A more stable alternative is

the following Modi�ed Gram-Schmidt (MGS) procedure.

Algorithm 4.3 The modi�ed Gram-Schmidt procedure to make a new vector z orthogonal to an

orthonormal set of vectors [v

1

; v

2

; : : : ; v

j

].

For i = 1; : : : ; j, do

67



1. c

i

= v

T

i

z;

2. z = z � v

i

c

i

.

The main di�erence between the CGS and MGS is that CGS performs the j dot-products together while MGS

does it one after the other. On distributed environment, a global sum operation needs to be inserted between

step 1 and 2 of the above two algorithms. As have discussed before, the global sum operation requires every

processor to synchronize, i.e., there is a signi�cant start-up time associated with each global sum operation.

The Classical Gram-Schmidt procedure allows one to combine j dot-products to reduce communication time

by reducing the number of times the global sum operation is performed. Therefore CGS is more suited for

distributed environment. To increase the quality of the solution from CGS, reorthogonalization is performed

under certain conditions [29]. The CGS with reorthogonalization can be stated as follows [29].

Algorithm 4.4 The Classic Gram-Schmidt procedure with reorthogonalization to make a new

vector z orthogonal to an orthonormal set of vectors [v

1

; v

2

; : : : ; v

j

].

0. � = kzk;

1. c = [v

1

; v

2

; : : : ; v

j

]

T

z;

2. z = z � [v

1

; v

2

; : : : ; v

j

]c;

3. if kzk < �� go to step 0; else continue.

4. z = z=kzk.

It is clear that the larger the � is, the more likely it is that the Gram-Schmidt procedure is repeated. Any

number between 0.1 and 0.7 can be considered as reasonable. We use 0.1 throughout this thesis unless

otherwise speci�ed. A normalization step is appended to this algorithm because this procedure is intended

to generate an orthonormal basis.

To increase the e�ciency of the program on parallel environment, algorithm 4.4 can be slightly modi�ed

to remove the computation of kzk at step 0. The vector c in the following algorithm is a short vector that

resides in every processor, thus computing c

T

c does not involve global communication. The test in step 3 in

the following algorithm is exactly equivalent to step 3 in algorithm 4.4 because [v

1

; v

2

; : : : ; v

j

] is orthonormal.

Algorithm 4.5 The classic Gram-Schmidt procedure with re-orthogonalization to make a new

vector z orthogonal to an orthonormal set of vectors [v

1

; v

2

; : : : ; v

j

].

1. c = [v

1

; v

2

; : : : ; v

j

]

T

z;

2. z = z � [v

1

; v

2

; : : : ; v

j

]c;

3. if c

T

c > (�

�2

� 1)z

T

z go to step 1; else continue.

4. z = z=(z

T

z)

1=2

.

A natural way of extending algorithm 4.5 to handle multiple vectors is to orthonormalize each new vector

one after another with the newly orthonormalized vector appended to [v

1

; v

2

; : : : ; v

j

] immediately. This

requires at least two global sums for each new vector. Since all the new vectors are available at the same

time, it is trivial to orthogonalize the new vectors against the old ones by extending algorithm 4.2 to a

block version. As is suggested in algorithm 4.1, the normalization step of the above algorithm should be

replaced by a QR factorization. Denote the new vectors by Z, Z = [z

1

; z

2

; : : : ; z

b

]. To fully exploit di�erent

possibilities, consider a more general decomposition, Z = QB where Q 2 R

n�b

is an orthonormal matrix

and B 2 R

b�b

is an arbitrary real matrix. Let S � Z

T

Z. To compute Q = ZB

�1

, we need to compute

B

�1

. If Z is full rank, S is a symmetric positive de�nite matrix. A Cholesky factorization can be used to

compute an upper triangular matrix B [51]. In general S is symmetric positive semide�nite, a more stable

decomposition is the eigenvalue decomposition, i.e., S = Y LY

T

where columns of Y are eigenvectors of S,

and L is a diagonal matrix where each diagonal element is an eigenvalue of S. Denote the eigenvalue by

�

i

, �

i

= L

ii

, i = 1; : : : ; b. Assume there are r nonzero eigenvalues and they are in descending order, i.e.,
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�

1

� �

2

� : : : � �

r

; > �

r+1

= : : : = �

b

= 0. For stability reason, Q is actually computed by replacing B

�1

with the nonsingular part of the pseudoinverse B

+

, i.e.,

Q = ZY

0

B

B

B

B

@

�

�1=2

1

0

.

.

.

0 �

�1=2

r

0

1

C

C

C

C

A

:

Now that Q has only r columns. We will replace the �rst r columns of Z with them. In most cases, the

eigenvalue routine can continue with only one new vector added to the basis, thus as long as r > 0, the

orthogonalization can stop.

The process just described essentially computes a SVD decomposition of Z, Z = QL

1=2

Y [51]. The

approach taken here is not a stable technique for computing the SVD decomposition, the main reason for

using it is to reduce interprocessor communication in distributed environment. Using 64-bit IEEE arithmetic,

the unit round o� error is about 2:2�10

�16

, any eigenvalue of S that is smaller than 2:2�10

�16

�

1

should be

considered unreliable. This algorithm uses about twice as many oating-point operations as that of a Gram-

Schmidt approach. If the new vectors are known to be linearly independent, then the Cholesky factorization

of S can be performed to reduce the complexity of computing ZB

�1

. Even though the Cholesky approach

is less expensive in oating-point arithmetic operations, it is still more expensive than the Gram-Schmidt

approach. This is the price for reducing data communication. In most cases this orthogonalization procedure

receives only one new vector at a time, in which case, this SVD procedure reverts back to simply normalizing

the vector z as in step 4 of algorithm 4.5.

The columns of Z may be badly scaled, in which case, the accuracy of the eigenvalues of S could be

compromised. To avoid this di�culty, the diagonal elements of S are scaled to 1 through a symmetric

scaling that is equivalent to scaling the columns of Z to norm 1. Let Y

r

denote the �rst r columns of Y . It

is clear that (ZY

r

) has r orthogonal columns, the norm of these columns are �

1=2

1

; : : : ; �

1=2

r

. If �

1=2

i

is small,

which means the b unit vectors combine to form a small vector, the cancelation error may be serious in this

case. It is necessary to recompute this column of Q.

A block version of the Gram-Schmidt procedure can be described as follows.

Algorithm 4.6 Block Gram-Schmidt procedure for orthonormalizing Z = [z

1

; : : : ; z

b

] against V

j

=

[v

1

; : : : ; v

j

] where V

T

j

V

j

= I.

1. C = V

T

j

Z;

2. perform global sum on all elements of C;

3. Z = Z � V

j

C;

4. S = Z

T

Z;

5. perform global sum on all elements of S;

6. let c

i

denote the ith column of C, s

ij

denote the element of S at the ith row and jth column, and set

ag REORTH to 0;

for i = 1; : : : ; b,

if c

T

i

c

i

> (�

�2

� 1)s

ii

, REORTH = 1;

7. let �

i

= s

1=2

ii

, i = 1; : : : ; b,

^

S =

0

B

@

�

�1

1

.

.

.

�

�1

b

1

C

A

S

0

B

@

�

�1

1

.

.

.

�

�1

b

1

C

A

;

8. eigenvalue decomposition,

^

S = Y LY

T

;
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# vectors CGS SVD

1 0.23 0.23

2 0.49 0.34

4 1.06 0.45

Table 4.7: Execution time of the orthogonalization routines.

CGS SVD

Si

2

24.8 24.5

Si

4

241.6 238.9

Si

6

1829.1 1790.8

Table 4.8: Execution time of the Davidson method with di�erent orthogonalization scheme.

9. assume the �rst r eigenvalues of S, �

1

; : : : ; �

r

, are nonzero, and Y

r

= [y

1

; : : : ; y

r

] be the corresponding

eigenvectors, replace the �rst r columns of Z with

Z

0

B

@

�

�1

1

.

.

.

�

�1

b

1

C

A

Y

r

0

B

@

�

�1

1

.

.

.

�

�1

r

1

C

A

;

10. if REORTH = 0, stop, else, go back to step 1.

Table 4.7 shows the time orthogonalize three di�erent sets of new vectors on a SGI R10000 workstation.

The vector dimension is 100,000. The new vectors need to orthogonalize against 14 orthonormal vectors.

As number of new vectors doubles, the execution time of CGS increase by a factor slightly larger than 2.

However, the time used by the SVD based orthogonalization routine increases considerably slower despite the

fact that SVD uses more oating-point operations than CGS. The primary reason for the saving in execution

time is that the SVD based orthogonalization uses BLAS-3 operation as oppose to BLAS-2 operations used

by CGS. For every memory access, considerably more oating-point operations are performed in the SVD

based orthogonalization routine.

Table 4.8 shows the comparison of two di�erent orthogonalization routines on the test problems. In the

Davidson method, there are only a small number of cases where the orthogonalization is performed on more

than one vectors. Therefore the di�erence between using CGS and SVD orthogonalization is not signi�cant.

4.5 Targeting

In the preconditioning step of algorithm 4.1, it is possible to generate j residual vectors. Since only one will be

used, there is a choice to be made on which residual to be used. The process of making this choice is referred

to as targeting, because the eigen-pair whose residual is chosen will bene�t the most from preconditioning.

The preconditioning equation is of the form (M � �)z = r. Thus, along with the residual vector, it is also

necessary to choose an appropriate shift �. In our implementation of targeting, the shift is chosen to be the

biased estimate of the eigenvalue corresponding to the residual vector [133]. Some of the common targeting

schemes are as follows [31].

1. Sloppy targeting. Always target the �rst unconverged one. For example, if the smallest eigenvalues

are wanted, this scheme always targets the smallest unconverged Ritz value. This is the scheme shown

in algorithm 4.1.

2. Minimum residual targeting. Target the Ritz pair with the smallest residual norm. The rationale

is that it will converge quickly and be locked out of the basis. Disadvantages of this scheme is that

residual norms are needed at every step. Since residual norms can not be estimated conveniently in
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Sloppy Minimum Maximum

MATVEC time(sec) MATVEC time(sec) MATVEC time(sec)

Si

2

334 24.6 411 30.8 686 83.9

Si

4

1177 240.3 1261 255.1 1020 209.6

Si

6

3856 1802.1 4355 2015.3 4020 1852.9

Table 4.9: Comparison of di�erent targeting schemes.

the Davidson method as in the Arnoldi method. A signi�cant amount of work is required to compute

all residual norms. In most of our applications, extreme eigenvalues are wanted, this targeting scheme

will encourage convergence of interior eigenvalues if one happens to have a small residual norm.

3. Minimum improvement targeting. Because the residual norms are not always available the Min-

imum Residual scheme is usually not a viable option. For the unpreconditioned Arnoldi and Lanczos

there is a direct proportional relation between the ith residual norm and the last element of the eigen-

vector y

i

. At step j, one could choose the ith Ritz pair corresponding to the smallest jy

ji

j as the target.

The value y

ji

indicates to how much the jth basis vector v

j

is used in forming the ith Ritz vector, x

i

.

If jy

ji

j is small, the contribution of the newest basis vector v

j

to x

i

is small which can be interpreted

as the improvement to x

i

is small. Thus this targeting scheme is named the minimum improvement

targeting. Since it is an imitation of the minimum residual targeting scheme, it may also su�er the

mis-convergence problem.

4. Maximum residual targeting. This scheme targets the Ritz pair with the largest residual norm. It

tries to keep all wanted Ritz pairs converge at about the same speed. In other word, it minimizes the

residual norm of the whole set of wanted eigenpairs. Similar to the minimum residual targeting, we

need to compute the residual norms which is expensive in the Davidson method.

5. Maximum improvement targeting. This is similar to the Minimum Improvement scheme, the

di�erence is that the ith Ritz vector corresponding to the largest jy

ji

j is chosen as the target. This is

the practical form of the maximum residual targeting scheme which avoids computing of the residual

norms.

In general, the Rayleigh-Ritz projection on a Krylov subspace basis gives accurate solutions to the extreme

eigenvalues. In selecting the target from all possible Ritz pairs, half of the Ritz pairs are never considered.

For example, if there are j Ritz values and the smallest eigenvalues are wanted, j=2 largest Ritz values are

discarded automatically. The target, is sought among the j=2 smallest Ritz values only. Among these 5

targeting strategies, we have chosen to test 3 of them, the sloppy scheme, the minimum improvement scheme

and the maximum improvement scheme. For most of our experiment so far, we have been using the sloppy

targeting scheme. Here we will provide additional tests for the other two.

Table 4.9 shows the results using di�erent targeting schemes on the three test problems. Only the

Davidson method is used here. In the Si

2

case, the maximum improvement scheme found an eigenvalue

missed by the other two schemes which might be the cause for it to take extra iterations. In general, the

maximum improvement scheme uses less matrix-vector multiplication than the other schemes if small number

of eigenpairs are sought. In the Si

6

case, the sloppy targeting scheme uses the least number of matrix-vector

multiplications. This indicates that if the number of wanted eigenpairs is large, the sloppy targeting is the

more e�ective approach.

In the unpreconditioned case, the residual vectors from both the Arnoldi method and the Lanczos method

are parallel to each other, therefore targeting does not apply to them. Even if the residual vectors are not

parallel to each other as in the case of variable preconditioning and thick restart, computing the residual

vectors and performing targeting will turn them into the Davidson method. For this reason, targeting is

only applicable to the Davidson method.
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2nd order finite difference 4th order finite difference

Figure 4.1: Boundary of �nite di�erence domains.

4.6 Miscellaneous Issues

This section describes a number of issues that can be described in a few paragraphs. Some of these might

be very important to our application. However we feel that they are well understood and it is fairly safe to

take the solutions as is. Our implementation of the Davidson method is strongly inuence by [137].

Matrix-vector multiplication To move the eigenvalue solvers on to a distributed environment, one of

major tasks is to build a parallel matrix-vector multiplication. The matrix-vector multiplication can be

divided into three components, the Laplacian operator, the local potential, and the non-local potential.

The Laplacian operator is discretized on a uniform grid with high-order �nite di�erence, see section 1.3

for details. Because of this, a signi�cant portion of the grid points are on the boundary of two or more

neighboring regions. Figure 4.1 illustrates this point on a small 2-D grid. For example, using a 12th order

�nite di�erence scheme on a 3-D, 50 � 50 � 50 grid distributed among 8 processors, if the grid is divided

into 8 25 � 25 � 25 cubes, the number of boundary points for each domain is 11,250 which is about 72%

of the number of grid points in the domain. If a one-way dissection scheme is used, the grid point in the

boundary of each domain is 30,000. On average, each domain only have 15,625 grid points. In this case,

every grid point in each domain is a neighbor to the two neighboring domains. In order to perform matrix-

vector multiplications, each domain needs to collect information about its neighboring grid points [74, 108].

The high-order �nite di�erence scheme used generates a heavy communication burden for matrix-vector

multiplications.

The local potential is translated into a diagonal matrix which is easy to multiply with a vector. The

non-local potential consists of a series of rank-one updates. Each rank-one update only involves a group of

nearby grid points. Thus it is advantageous to keep grid points near each other in physical space on the

same processor.

Currently, because of the cut-o� used to eliminate the region far away from all atoms, the actual shape

of the domain is more complex than a simple cube. Because of this, a one-way dissection is used.

Block size One of the main reasons for using a block version of the Davidson method is to �nd eigenvalues

with multiplicity. In most of the matrices we encounter, a small fraction of the eigenvalues have multiplicity

of 2. In this case a block Davidson method may be more e�ective in �nding these pairs. Table 4.10 shows

the 15 eigenvalues found by the Davidson method with three di�erent block sizes. The eigenvalues found by

the one with large block size are smaller. This is one advantage of the block versions. Table 4.11 shows the

number of matrix-vector multiplications and time spent by the Davidson method with di�erent block sizes.

As the block size increases, the number of matrix-vector multiplication also increases. With block size equals

to 3, the Davidson method only found 54 eigenvalues in 6000 matrix-vector multiplications. Note that in
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index block size 1 block size 2 block size 3

1 -1.2750880627204270 -1.2750880627204220 -1.2750880627203820

2 -0.8992141228203836 -0.8992141228204291 -0.8992141228203198

3 -0.6568632812722515 -0.6568632812722639 -0.6568632812722880

4 -0.6568632812720828 -0.6568632812721114 -0.6568632812721611

5 -0.6041182133481225 -0.6041182133481178 -0.6041182133480028

6 -0.4435022950906883 -0.4435022950906463 -0.4435022950906686

7 -0.4435022950905120 -0.4435022950905874 -0.4435022950905792

8 -0.2028945606052125 -0.2028945606051076 -0.2028945606051557

9 -0.0507442640005357 -0.0507442640004036 -0.0507442640004178

10 0.0198086197809004 0.0198086197806211 0.0198086197809959

11 0.0230854125436574 0.0230854125442987 0.0230854125437922

12 0.0752754990856610 0.0752754990857491 0.0752754990855957

13 0.2245746976397505 0.0752754990859121 0.0752754990859352

14 0.4978875801877848 0.2011440266899505 0.2011440266913496

15 0.7908817209903563 0.2245746976397852 0.2170778546873740

Table 4.10: Eigenvalues of Si

2

found by the Davidson method.

block size 1 block size 2 block size 3

MATVEC time(sec) MATVEC time(sec) MATVEC time(sec)

Si

2

334 24.6 435 31.5 1291 88.9

Si

4

1177 240.3 1444 316.1 2692 585.2

Si

6

3856 1802.1 5180 2520.5 -54 2728.3

Table 4.11: Eigenvalues of Si

2

found by the Davidson method.

both the Si

4

and the Si

6

cases, the eigenvalues found with di�erent block sizes are the same.

Table 4.10 may cause alarm about the quality of the eigenvalues found. In general, it is always possible

that some desired eigenvalues are not found by a projection based eigenvalue method. If the 100 smallest

eigenvalues are desired, usually, the Davidson method can �nd the smallest 80{90 without a problem. In

table 4.10, 12 of the 15 smallest eigenvalues are the same for all three cases. This suggest that if 100

eigenvalues are desired, we should ask the Davidson method for 120. Also note that in this particular set of

test matrices, the negative eigenvalues are the ones of interest. The Davidson method with block size 1 does

�nd all negative eigenvalues correctly.

Workspace We have decided to save both V andW (= AV ) in memory. The basis vectors V are needed in

many operations, unless we have to store a large number of them it is the easiest to just keep them around.

There are alternatives to savingW . The arrayW is used to compute the residual vectors, r =Wy��V y, and

used to compute the projection, H = V

T

W . The projection matrix H can be built progressively, therefore,

only one column of W is needed at a time for this purpose. However all the columns are required to compute

r. We could perform one matrix vector multiplication use the following formula instead r = Ax � �x.

On average there are less than 40 nonzero elements per row in the matrices. In terms of oating-point

operations, performing one matrix-vector multiplication is equivalent to combining about 40 vectors to form

Ax. But performing the matrix-vector multiplication has two disadvantages compared with performing linear

combinations. First, the matrix-vector multiplication involves a sparse matrix. Because its irregular memory

access pattern, it is usually slower than performing linear combination. Second, on parallel computers, the

matrix-vector multiplication demands data communication between processors while the linear combination

doesn't require any communication. In all of our experiments we always keep the basis size less than 40,

therefore it is more e�cient to save W rather than performing matrix-vector multiplications to compute

residuals.
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Figure 4.2: Loss of orthogonality in Arnoldi bases.

index without monitoring with monitoring

1 -1.2750880627204260 -1.2750880627204260

2 -0.8992141228204374 -0.8992141228204383

3 -0.6568632812723210 -0.6568632812723436

4 -0.6568632812722531 -0.6568632812723463

5 -0.6041182133481187 -0.6041182133481187

6 -0.4435022950906814 -0.4435022950906887

7 -0.4435022950906830 -0.4435022950906908

8 -0.2028945606049544 -0.2028945606051070

9 -0.0507442640005358 -0.0507442640005366

10 0.0198086197809159 0.0198086197811722

11 0.0230854125435991 0.0230854125438236

12 0.0752754990856684 0.0752754990856461

13 0.0752754990859336 0.0752754990858102

14 0.2245746976397545 0.2011440266897905

15 0.4978875801876783 0.2245746976397520

Table 4.12: Eigenvalues of Si

2

found by the Arnoldi method.

Normality of Ritz vectors In order to save matrix-vector multiplications, at restart, the Ritz vectors

in V are assumed to be orthonormal, and the corresponding vectors in W are assumed to satisfy relation

W = AV . After a number of restarts, the Ritz vectors may gradually lose orthogonality because the

accumulation of round-o� error. This is especially a problem with the Arnoldi method. Thus we use the

Arnoldi method as an example. Here is a list of Frobenius norms of V

T

V � I from the �rst 10 bases built

by the Arnoldi method when solving the Si

2

test problem,

10

�12

, 10

�12

, 10

�11

, 10

�10

, 10

�9

, 10

�8

, 10

�8

, 10

�8

, 10

�8

, 10

�7

.
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The above list shows that the orthogonality of the basis deteriorates quickly from one restart to the next

restart. Theoretically, the unpreconditioned Arnoldi method is equivalent to the unpreconditioned Davidson

method. However, in reality, the Arnoldi method often takes more iterations to compute the same eigenpair.

This loss of orthogonality problem the root cause of the di�erence. This loss of orthogonality problem also

happens to the Davidson method especially when a good preconditioner is used. Thus, there is a need to

moderate the loss of orthogonality in the basis. Computing (V

T

V � I) is fairly expensive, so we choose to

monitor the norm of the �rst Ritz vector computed at step 4 in algorithm 4.1. If the norm of this Ritz vector

deviates from 1 signi�cantly, we will discard the content of W and re-orthogonalize the vectors in V before

continuing. The �rst Ritz vector is computed by x

1

= V y

1

. Let V

�

and y

�

1

be the quantity V and y

1

in exact

arithmetic, the error in the computed Ritz vector x

1

is �x

1

= V

�

(y

1

� y

�

1

)+ (V �V

�

)y

�

1

+(V �V

�

)(y

1

� y

�

1

).

If the errors in V and y

1

are small, the last term can be neglected. To estimate the di�erence between

the norm of x

1

and 1, we need to evaluate the following expression x

T

1

�x

1

. The norm of the error is

k�x

1

k � ky

1

� y

�

1

k + kV � V

�

k. Since the vector y

1

is an eigenvector of H computed by a QR based

eigenvalue routine from LAPACK, it should be very close to be a unit vector. Thus, the deviation in norm

of x

1

is mostly contributed from V . If each entry of V is allowed to have � di�erence from its exact value,

kV � V

�

k �

p

mn� where n is the number of rows in V and m is the number of columns. The value of

� can be the unit round-o� error. If the �rst Ritz vector norm deviates more than 2�

p

mn from one, we

consider that the basis V has lost orthogonality, the vectors are orthonormalized again before building the

next basis. The following are the orthogonality measure kV

T

V � Ik

F

from the �rst ten bases built by the

Arnoldi method with the above monitoring scheme,

10

�12

, 10

�12

, 10

�11

, 10

�10

, 10

�9

, 10

�12

, 10

�12

, 10

�13

, 10

�13

, 10

�13

.

Figure 4.2 show the orthogonality of the Arnoldi bases with and without this monitoring scheme. Without

monitoring, the Arnoldi method build 48 bases, with monitoring, the Arnoldi method build 53 bases. Ob-

viously, extra work is done with monitoring, the payo� is the extra eigenvalue found, see table 4.12. The

eigenvalue 0.2011 was missed by the Arnoldi method without the monitoring scheme.

Here we demonstrated the importance of maintaining orthogonality of the basis by one example and

showed one way of maintain the orthonormality of the basis. We should point out that the interplay between

the orthonormality of the basis and the quality of the eigenpairs is a fairly complex issue. Loss of normality of

the Ritz vectors is only one results from loss of orthonormality in basis. Reducing the tolerance on deviation

of Ritz vector norm does not always increase the quality of the basis. Re-orthogonalizing the basis before

every restart does not reduce the number of restarts required to compute the same solution. Maintaining

good orthogonality of the basis is only one of the many factors that can a�ect the quality of eigenpairs.

This example happens to involve a missing eigenvalue. In general, we don't believe the missing eigenvalue

problem can not be addressed solely by orthogonality alone.

4.7 Summary

This chapter is devoted to some of the implementation issues related to the development of an e�ective

eigenvalue code for large sparse eigenvalue problems. We discussed techniques adopted to computed a

large number of eigenpairs without requiring proportionally large amount of workspace, variations of thick-

restarting schemes and targeting schemes. We have also shown the reverse communication protocol used in

the program to remove the dependencies on the sparse matrix storage format and to ensure an easy transition

to a parallel environment. Some key components of the Davidson method are re-orthogonalized to enhanced

the program's performance on parallel machines.

To show that it is in fact easy to adopt the program to the parallel environment, we will show some

preliminary results of using the eigenvalue code described above on the eigenvalues problem generated from

a slightly larger simulation cases. To limit the waiting time during the experiment, we only tested the

eigenvalue code on the Si

47

H

60

case. The matrix size is about 30,000 and 162 eigenpairs are wanted

from the lower end of the spectrum. The test is done on a small IBM SP2 cluster with high performance

switches. The execution time to �nd all required eigenpairs during the �rst self-consistent iteration is shown

in table 4.13. The results in this table is far from optimal and we are actively seek to identify the strength

and weakness of the code on parallel environment.
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# procs time speedup

1 971 -

2 722 1.3

4 588 1.7

Table 4.13: The execution time of the eigenvalue code on a small SP2 cluster.
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Chapter 5

Polynomials in Eigenvalue Methods

5.1 Introduction

Use of optimal polynomials has been an integral part of eigenvalue methods [15, 110, 112, 116, 120, 121].

Let A denote the matrix of interest, P (A) denote a polynomial of A. In these eigenvalue methods, the

polynomial P (A) is not explicitly required. The operation of multiplying P (A) by a vector can be broken

into a series of matrix-vector multiplications with A. Since the matrix-vector multiplication with A is an

essential part of any projection eigenvalue method, only a minimal amount of additional work is required to

add a polynomial preconditioner or to construct a hybrid method that alternates between a Krylov method

and a polynomial method.

Polynomials can be used to directly improve the quality of an approximate eigenvector. Some of the

earlier eigenvalue methods rely on this property exclusively for computing eigenvector approximations, for

example, RITZIT [104, 105]. Recently, it has been shown that a more e�ective way of using polynomials

is to construct a hybrid method that alternates between a polynomial method and a projection method

[112, 116, 121]. Hybrid methods of this type are attractive on new parallel computing environments because

they require little additional work beyond the basic projection eigenvalue method. In addition, the Chebyshev

polynomial has been shown to successfully complement the Arnoldi method and other Krylov methods in

solving linear systems and eigen-systems [17, 116, 121, 123, 132]. In the hybrid method mentioned above,

this step of applying the polynomial to improve the quality of eigenvectors is also referred to as puri�cation,

or polynomial puri�cation.

Preconditioning techniques which seek to approximately solve (A � �I)z = r are known to be error-

prone, see page 30 and [36]. For this reason, polynomial preconditioners used in this chapter are not linear

system solvers. Instead, they are designed to improve eigenvector approximations like in the polynomial

puri�cation. This avoids some of the di�culties of solving the nearly singular preconditioning equation.

The second reason for not directly using polynomials to solve the preconditioning equation is that there are

many Krylov methods that are easier to use and are just as e�ective as polynomial methods with optimal

parameters. These optimal parameters for polynomial methods are often computed from the spectrum of the

matrix which is usually unknown. Since Krylov methods like the Conjugate Gradient (CG) method, do not

require detailed knowledge about the spectrum of the matrix, they are easier to use than polynomial methods.

In practice, CG is also observed to be more e�ective than the Chebyshev method on symmetric linear systems.

However, during computation of the eigenvalues, it is possible that the parameters for the polynomials can

be better estimated than what is possible during the solution of a linear system. Through the use of better

parameters and avoiding some pitfalls of the Davidson preconditioning, polynomial preconditioning could be

more e�ective for eigenvalue problems than for linear systems.

In Chapter 2, we adopted a locking mechanism to reduce the active basis size in eigenvalue routines.

When computing a large number of eigenpairs using these algorithms, a signi�cant amount of execution time

is spent on orthogonalizing the current basis vectors against the converged eigenvectors. One motivation

for considering polynomials is to reduce this orthogonalization time. In terms of arithmetic operations, if

an average row of a sparse matrix has 40 nonzero elements, performing a matrix-vector multiplication is
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equivalent to orthogonalize against 20 eigenvectors. In this case, orthogonalizing against 1000 eigenvectors

is equivalent to 50 matrix-vector multiplications, i.e., a polynomial of degree 50 can be constructed using

the same amount of arithmetic operations. If (�; x) is an eigenpair of A, the corresponding eigenpair of

P (A) is (� = P (�); x). With a polynomial of degree 50, an interior eigenvalue of A may be transformed into

an extreme eigenvalue of P (A). In this case, the Davidson method applied on P (A) will not be required

to enforce orthogonality against the converged eigenvectors of A. This use of polynomials will be called

polynomial spectrum transformation. It is a simpler version of spectrum transformation techniques, since

commonly used ones, for example, shift-invert Lanczos techniques [53], and rational Krylov methods [103],

all require inversion of a sequence of di�erent matrices during the solution of one eigenpair. The polynomial

spectrum transformation technique can not only be used to transform interior eigenvalues into extreme ones,

but also used to increase the separation between the wanted eigenvalue and the unwanted ones.

In short, this chapter will study three ways of using polynomials in eigenvalue methods, puri�cation,

preconditioning, and spectrum transformation. The rest of this chapter is arranged as follows. In the next

section, we will describe some characteristics of the polynomials to be used. Section 5.3 gives some examples

of how the Davidson method behave for interior eigenvalue problems since we have not done so before.

Section 5.4 describes how we determine the coe�cients of the polynomials. Sections 5.5, 5.6 and 5.7 will be

devoted each to one of the three techniques of using polynomials. Section 5.8 describes an example of how

to use polynomials to increase e�ciency when computing a large number of eigenpairs. A brief summary is

provided at the end.

5.2 Characteristics of the polynomials

Polynomials we will use in this study are: the Chebyshev polynomials [51, 116], the Chebyshev polynomials

of the second kind [101], the least-squares polynomials [111] and the Kernel polynomials [1, 23, 33, 141].

This section will not give detailed algorithms for these polynomials since they are widely available. The

main purpose of this section is to familiarize readers with some general characteristics of these polynomials

and review the features that are relevant to their performance in solving eigenvalue problems.

The polynomials mentioned above can be divided into two categories according to their usage. They are

either used to compute extreme eigenvalues or interior eigenvalues. We use the following polynomials for

extreme eigenvalue problems: the Chebyshev polynomials, the Chebyshev polynomials of the second kind,

and the least-squares polynomials on one interval. The following polynomials are used for interior eigenvalue

problems: the least-squares polynomial on two intervals and the Kernel polynomial. Note that the Kernel

polynomials may also be used for extreme eigenvalues. However, we will mainly use it for interior eigenvalue

problems in this study.

The Chebyshev polynomial can be computed through a simple three-term recurrence. Let T

k

(�) denote

the kth degree polynomial of �, the recurrence is

T

k+1

(�) = 2�T

k

(�)� T

k�1

(�);

where T

0

= 1 and T

1

= �. The Chebyshev polynomial de�ned this way is an orthogonal polynomial in the

interval [�1; 1] which is also known as the Chebyshev interval. Within this interval, the maximum of the

polynomial is 1. Outside of this interval, the absolute value of the polynomial grows rapidly. Let (�

�

i

; x

�

i

),

i = 1; : : : ; n, denote the exact eigenpairs of the matrix A, and the initial guess of the eigenvector be the

following

x =

X

�

i

x

�

i

: (5.1)

For simplicity, we assume the eigenvalues are in ascending order. The result of applying a Chebyshev

polynomial on x can be expressed as follows,

T

k

(A)x =

X

�

i

T

k

(�

�

i

)x

�

i

: (5.2)

Compared with the initial value x, we see that T

k

(A)x has larger components corresponding to �

�

i

outside of

the Chebyshev interval. In other word, the components corresponding to �

�

i

inside the Chebyshev interval

78



is suppressed. If the wanted eigenvalue is the only one outside of [�1; 1], with su�ciently large k, T

k

(A)x

can be made arbitrarily close to the wanted eigenvector.

Normally, the unwanted part of spectrum does not conveniently fall into [�1; 1]. In which case, it is

necessary to shift and scale the polynomial, i.e., change the Chebyshev interval to cover the unwanted

eigenvalues. For a complete algorithm for computing this shifted and scaled Chebyshev polynomial, see, for

example, reference [116]. From now on, unless stated otherwise, all polynomials used are shifted and scaled.

If the approximate eigenvalue is �, the polynomials are scaled so that P (�) is 1. For symmetric eigenvalue

problems, the Chebyshev polynomial is de�ned on a Chebyshev interval that contains the unwanted part of

the spectrum. If the wanted eigenvalue is �, the center of the interval is at c, the half width of the interval

is d, i.e., the Chebyshev interval is [c� d; c+ d], then the following is true,

T

k

(�)

T

k

(c� d)

�

 

j�� cj+

p

(�� c)

2

� d

2

d

!

k

: (5.3)

This is a well known result about the Chebyshev polynomial which will be used to select the degree of the

polynomial and the boundaries of the interval.

Assuming the �rst eigenpair is to be computed, in order to reduce error of the approximate solution, the

Chebyshev interval should contain eigenvalues �

�

2

; : : : ; �

n

. To measure the e�ectiveness of polynomial, the

following de�nition of the damping factor  is commonly used.

 = max

i 6=1

T

k

(�

�

i

)

T

k

(�

�

1

)

:

In practical use, the damping factor of T

i

is often approximated as

 �

T

k

(c� d)

T

k

(�)

:

Since we also scale T

k

(�) to 1,  � T

k

(c� d).

Figure 5.1 shows two instances of the Chebyshev polynomial. The examples are designed with the

following scenario in mind: the eigenvalues of the matrix are in the range of [0, 1], and the smallest eigenvalue

0 is to be computed. The polynomials are scaled so that T

k

(0) = 1. The �gure shows that a 5-degree

Chebyshev polynomial can reduce the contribution of eigenvalues in the range of [0.1, 1] by about one-

eighth. In order to reduce the contribution from all eigenvalues in the range of [0.01, 1] by the same ratio, a

17-degree Chebyshev polynomial is needed. This clearly demonstrates the dependency between the damping

factor and the separation between wanted and unwanted eigenvalues.

An important characteristic of the Chebyshev polynomial is that among all polynomials of the same

degree it has the fastest growth rate outside of the same interval [101, section 2.7.1]. Many aspects regarding

the e�ective use of the Chebyshev polynomial have been discussed. In this study, we emphasis how to use

Chebyshev polynomial to transform part of the spectrum to help the Davidson method to reach convergence.

In this context, we do not rely on the polynomial method to handle the whole spectrum, the results and

observations from previous studies may not apply. However, we are strongly inuenced by previous researches

in adaptive Chebyshev polynomial for linear systems and eigenvalue problems [6, 15, 112, 113, 116, 120, 121].

Another property of the Chebyshev polynomial of interest is that it has the largest derivative among all the

polynomials that has the same maximum value in the interval [101, section 2.7.4]. If the extreme eigenvalues

are clustered, this property indicates that using the Chebyshev polynomial to transform the spectrum is

most e�ective in increasing the separations.

The Chebyshev polynomial we referred to in the above discussion is the Chebyshev polynomial of the

�rst kind [101]. The above reference to the derivative leads us to consider the Chebyshev polynomial of the

second kind which is the derivative of the Chebyshev polynomial of the �rst kind. Let U

k

(�) denote kth

order Chebyshev polynomial of the second kind. The �rst two U

k

s are: U

0

= 0, U

1

= 2�. The remaining ones

follow the same recurrence relation as the Chebyshev polynomial the �rst kind [101, Ex 1.5.19]. Figure 5.2

shows two examples of the two kinds of Chebyshev polynomials. Note that the Chebyshev polynomials

shown are the same as in Figure 5.1. In �gure 5.2, the Chebyshev polynomial of the �rst kind is indicated
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5 degree, on [0.1, 1]  

17 degree, on [0.01, 1]
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Figure 5.1: Two Chebyshev polynomials.
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5 degree, on [0.1, 1]

Chebyshev I 

Chebyshev II
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17 degree, on [0.01, 1]

Figure 5.2: Comparison of Chebyshev polynomials of the �rst kind and the second kind.
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5 degree, on [0.1, 1]
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17 degree, on [0.01, 1]

Figure 5.3: Comparison of the Chebyshev polynomial and the least-squares polynomial.

by `Chebyshev I' and the Chebyshev polynomial of the second kind is indicated by `Chebyshev II'. We note

that the two Chebyshev polynomials are close to each other near 0. In the range [0:1; 0:9], the value of the

Chebyshev polynomial of the second kind is smaller than the Chebyshev polynomial of the �rst kind. This

indicates that the Chebyshev polynomial of the second kind could damp interior eigenvalue components

better than the Chebyshev polynomial of the �rst kind. Near 1, the Chebyshev polynomial of the second

kind is again larger in magnitude because the Chebyshev polynomial of the �rst kind changes rapidly near

the ends of the Chebyshev interval. Overall, if the initial guess of an extreme eigenvector does not contain

any contribution from the opposite end of the spectrum, then using the Chebyshev polynomial of the second

kind could be more e�ective than the commonly used Chebyshev polynomial of the �rst kind.

The least-squares polynomial described in [111] was originally developed for solving inde�nite linear

systems. It was designed to damp eigen-components in two disjoint intervals of the spectrum. Further study

of using the least-squares polynomial as preconditioner for linear system can be found in [6]. The same least-

squares principle can be used to develop a polynomial that only damps eigen-components in one interval like

the Chebyshev polynomial. This is what is shown in Figure 5.3. The recursive formula for computing the

coe�cients of the polynomial is given in [111] and [116]. Without referring to the details of the algorithm,

we note that the least-squares polynomial is computed through a three-term recurrence which is similar to

the Chebyshev polynomial. This least-squares polynomials used here are built from the Chebyshev basis,

other orthogonal basis could also be used.

Figure 5.3 shows two examples of the least-squares polynomials on one interval. The Chebyshev polyno-

mials shown in this �gure are again the same as in �gure 5.1 and the least-squares polynomial in each plot

is of the same order and on the same interval as the corresponding Chebyshev polynomial. One important

observation here is that the least-squares polynomial is much closer to zero far away from 0 compared to

the Chebyshev polynomial. This is the main motivation for us to consider the least-squares polynomial.

Similar to the Chebyshev polynomial, the interval on which the least-squares polynomial is built determines

its property. Selection of this interval is the main issue to be addressed.
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Figure 5.4: The two polynomials for interior eigenvalue problems.
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Figure 5.5: The 2-interval least-squares polynomial with inner boundaries.
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Figure 5.6: The Kernel polynomial and the 2-interval least-squares polynomial at very high degree.

Figure 5.4 shows an example of the two polynomials we plan to use for interior eigenvalue problems,

namely, the least-squares polynomial on two intervals and the Kernel polynomial. In this case, the two

intervals are [0; 0:45] and [0:55; 1]. The Kernel polynomial centers at 0.5 and it is constructed from a

sequence of Chebyshev polynomials on the interval of [0; 1]. Both polynomials are scaled to be one at the

center. Kernel polynomials can be constructed using di�erent basis polynomials, we have chosen to only use

the Chebyshev basis. Kernel polynomials has been used for interior eigenvalue problems in the literature. For

example, in [151], the authors described how to use Kernel polynomials in simulation of material properties.

The magnitude of a Kernel polynomial reduces as it goes away from the speci�ed center. In this respect,

it can be regarded as a polynomial approximation of the �-function [33]. Using approximate �-function for

interior eigenvalue problem has been studied also, for example, [92]. Using Kernel polynomial for linear

systems can be traced back to 1955 [138]. More recent references include [45, 46].

Figure 5.5 uses a few examples to show the dependencies of the least-squares polynomial on the intervals

chosen. The polynomials shown in this �gure are of degree 100. The wanted eigenvalue is still assumed to

be 0.5. The gap refers to the distance between 0.5 and the end of the intervals. For example, if the gap is

0.01, then the two intervals are [0; 0:49], and [0:51; 1]. To e�ectively use the least-squares polynomial and

the Kernel polynomial, the key is again how to select the intervals on which to build these polynomials.

This is especially important for the least-squares polynomial since there are two intervals to be determined

when seeking interior eigenvalues. In this chapter, we study di�erent schemes for selecting the intervals for

the polynomials, and see how to e�ectively combine them with the Davidson method to solve eigenvalue

problems.

5.3 Davidson method for interior eigenvalues

Computing interior eigenvalues is generally regarded as a more di�cult problem then computing extreme

eigenvalues. Theoretically, the Lanczos method converges faster toward extreme eigenvalues than toward

interior eigenvalues [116]. The same is true for the Arnoldi method and the Davidson method when applied to

a symmetric problem without preconditioning. The following is an example shows that the interior eigenvalue

problem is more di�cult for polynomial methods as well. Figure 5.6 shows the Kernel polynomial and the
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2-interval least-squares polynomial at three di�erent orders, namely, 500, 1000, and 5000. The two intervals

for the least-squares polynomial is [0; 0:499] and [0:501; 1]. The Kernel polynomial is build on the interval

[0; 1]. The centers for both polynomials are 0.5. At 5000 degree, the two-interval least-squares polynomial is

about 1:4� 10

�4

at 0.499, see Figure 5.6. If the extreme eigenvalue has 0.001 separation from the rest, i.e.,

the extreme eigenvalue is 0, the rest of the spectrum is in [0:001; 1], a 150 degree Chebyshev polynomial can

achieve the damping factor of 1:4�10

�4

, and a 172 degree least-squares polynomial on the same interval can

also achieve the same damping factor. As expected, with the same separation, a polynomial of much higher

degree is required to achieve the same damping factor for interior eigenvalues than for extreme eigenvalues.

The main task of this section is to identify a basic algorithm for interior eigenvalue problems for later

experiments. Based on our past experience with the Davidson method, it is a good candidate for computing

a few interior eigenvalues.

As we have mentioned in previous chapters, one way to compute a few eigenvalues around a given

number

^

� is to slightly modify the Davidson method, algorithm 4.1. The modi�cation can be limited to

the the Rayleigh-Ritz procedure in algorithm 4.1. Instead of ordering the eigenvalues of H

m

in ascending

order, we now order them according the distance from

^

� and place the ones closer to

^

� at the beginning

of the array. Aside from the Rayleigh-Ritz procedure, we can also use harmonic Ritz projection scheme to

compute the eigenpairs [78]. Since the harmonic Ritz projection technique is designed to compute interior

eigenvalue, the harmonic Davidson method for interior eigenvalues use it to �nd the eigenvalues during the

expansion of the basis and during restart, i.e., the harmonic Ritz method are used in both step 2.d and step

3 of algorithm 4.1. This is di�erent from the harmonic Davidson method for extreme eigenvalues where the

harmonic Ritz projection is only used in step 2.d of algorithm 4.1. Because the harmonic Ritz vectors are

not orthonormal in Euclidean norm, they are orthonormalized before restart to maintain the orthonormality

of the basis. One alternative would be to choose to work with non-orthonormal basis which would require

more modi�cation to the code we have for computing the extreme eigenvalues. Thus we will not use this

alternative form.

To test the performance of the Davidson method and the harmonic Davidson method for interior eigen-

value problems, we conducted an experiment on the non-diagonal symmetric matrices in the Harwell-Boeing

collection, see tables 2.2 and 2.3 and reference [37]. In this experiment, we compute the two eigenvalues that

are closest to the center of the Gershgorin interval [a

G

; b

G

] where [51, 139]

a

G

= min

i

(ja

ii

j �

X

j 6=i

ja

ij

j); b

G

= max

i

(ja

ii

j+

X

j 6=i

ja

ij

j):

The number of matrix-vector multiplications used to compute these two eigenvalues are shown in tables 5.1

and 5.2. The maximum basis size used in the Davidson method and the harmonic Davidson method is

20. The tolerance on the residual norm is set to be 10

�12

kAk

F

. No preconditioning is used. The basis is

built from one initial vector [1; 1; : : : ; 1]

T

. In chapter 2, we have shown that the Davidson method without

preconditioning is equivalent to the Arnoldi method in theory. However, in practice, the Davidson method

is more stable than the Arnoldi method and it is more e�ective with preconditioning as well.

In tables 5.1 and 5.2, the �rst column is the matrix name, the second column is the number of matrix-

vector multiplications used by the Davidson method for interior eigenvalue problems, the third column

shows the number of matrix-vector multiplications used by the harmonic Davidson method, and the last

two columns are the results from two polynomial methods. The polynomial methods simply apply either

the 100-degree least-squares polynomial or the 100-degree Kernel polynomial on a set of initial guesses, then

apply Rayleigh-Ritz projection on the resulting vectors. This process is repeated until the residual norms

are less than 10

�12

kAk

F

. The interval used for the Kernel polynomial is the Gershgorin interval. Denote

the two intervals of the least-squares polynomial as [a

1

; b

1

] and [a

2

; b

2

]. The values of a

1

and b

2

are the left

end and the right end of the Gershgorin interval. Order the Ritz values according to the distance from the

center of the Gershgorin interval, then a

2

and b

1

are computed as follows,

b

1

= c� jc� �

3

j; a

2

= c+ jc� �

3

j;

where c = (a

1

+ b

2

)=2 in this test. The polynomials are applied on a block of 20 vectors. The initial guesses

are the �rst 19 columns of the identity matrix plus the vector [1; 1; : : : ; 1]

T

.
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harmonic

Davidson Davidson least-squares Kernel

494 BUS 28 >100000 10820 62620

662 BUS 37 972 7020 32320

685 BUS 19 >100000 4940 54540

1138 BUS 347 905 >100000 >100000

BCSSTM07 476 2082 24240 24240

BCSSTM10 32724 >100000 66660 78780

BCSSTM12 238 328 15340 28280

BCSSTM13 47 >100000 2020 2020

BCSSTM27 9114 27487 44440 54540

GR 30 30 25365 80615 40400 40400

LUND A 385 2890 20200 18180

LUND B 357 5063 24240 22220

NOS1 197 2554 36360 38380

NOS2 2927 14246 34340 36360

NOS3 14368 >100000 >100000 >100000

NOS4 401 4582 24240 24240

NOS5 6272 19491 42420 30300

NOS6 1123 >100000 28680 >100000

NOS7 44 971 44760 >100000

PLAT1919 8141 54674 >100000 >100000

PLAT362 755 >100000 40400 34340

ZENIOS >100000 >100000 2020 2020

Table 5.1: Number of matrix-vector multiplications used to compute two interior eigenvalues of Harwell-

Boeing matrices (PART I).

Among the four methods tested in this experiment, the Davidson method is the most e�ective one. The

two polynomial methods tested generally require considerably more matrix-vector multiplications compared

with the Davidson method. The only exception to above observation is the matrix ZENIOS. There are

a number of zero rows near the top of the matrix, which makes 0 an exact eigenvalue and e

i

the exact

eigenvector. Since the center of the Gershgorin interval is also 0 in this case, the initial guess for the two

polynomial methods contains the exact solutions. Overall, on the problems tested, the Davidson method

performs better than the harmonic Davidson method. There is only one exception found, the harmonic

Davidson method used less matrix-vector multiplications to �nd two interior eigenvalues of BCSSTK14

than the Davidson method. In this case, the harmonic Davidson method not only used less matrix-vector

multiplications, but also found two eigenvalues that are closer to the center of the Gershgorin interval.

Comparing between the two polynomial methods, the least-squares polynomial performs better than

the Kernel polynomial because is used less matrix-vector multiplications to achieve convergence in a large

number of the test cases. This can be partly explained by the fact that the intervals for the least-squares

polynomials are dynamic selected. Because this variations in the boundaries of the intervals, the least-squares

polynomial has peaks and valleys located at di�erent locations which makes it more e�ective in damping out

the unwanted eigenvector components, see �gure 5.5.

Based on the results of this experiment, we will only use the Davidson method for the later tests on

interior eigenvalue problems. The results of the polynomial methods for interior eigenvalues provides a

reference point for later comparisons.
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harmonic

Davidson Davidson least-squares Kernel

BCSSTK01 35 3012 18180 18180

BCSSTK02 36 3480 14140 18180

BCSSTK03 22 30 3740 6060

BCSSTK04 138 1085 20200 22220

BCSSTK05 128 602 22220 22220

BCSSTK06 139 167 12120 30300

BCSSTK07 139 167 12120 30300

BCSSTK08 20 20 3100 60600

BCSSTK09 1191 10380 46460 60600

BCSSTK10 1735 3729 44440 38380

BCSSTK11 171 1852 17960 38380

BCSSTK12 171 1852 17960 38380

BCSSTK13 61 80 32320 >100000

BCSSTK14 23294 3207 34340 >100000

BCSSTK15 1660 7638 58580 >100000

BCSSTK16 43679 >100000 >100000 >100000

BCSSTK17 461 3141 66660 >100000

BCSSTK18 123 1361 4940 36360

BCSSTK19 189 2332 21840 >100000

BCSSTK20 21 7704 22340 >100000

BCSSTK21 60705 >100000 >100000 >100000

BCSSTK22 118 962 10100 44440

BCSSTK23 45 721 27780 >100000

BCSSTK24 86 433 46460 56560

BCSSTK25 17 142 27020 38380

BCSSTK26 71 5251 32320 >100000

BCSSTK27 1029 13427 36360 38380

BCSSTK28 31 54150 30300 >100000

Table 5.2: Number of matrix-vector multiplications used to compute two interior eigenvalues of Harwell-

Boeing matrices (PART II).

5.4 Intervals of unwanted eigenvalues

As indicated before, in order to e�ectively use the polynomials, we need to determine their coe�cients.

To fully determine the three polynomials for extreme eigenvalue, we need to identify an interval covering

unwanted eigenvalues. For the Kernel polynomial, we need to know the range of the entire spectrum. In

the two-interval least-squares polynomial case, two intervals each from one side of the wanted eigenvalue

need to be identi�ed. In addition to these intervals, we need to also identify an appropriate degree for the

polynomials.

When considering extreme eigenvalues, two boundaries of an interval covering all unwanted eigenvalues

need to be determined. For convenience of discussion, let [a; b] denote the interval and assume that the

smallest eigenvalue and the corresponding eigenvector is to be computed. We will refer to a as the left end,

and b as the right end. In this study, we consider three di�erent ways of selecting a and two di�erent ways

of selecting b. Since these boundaries completely determine the properties of the three polynomials we have

chosen for extreme eigenvalue problems, it is crucial to select the optimal values for both a and b.

We will use the damping factor of the Chebyshev polynomial to guide the selection of degree of the

polynomials to use after the interval [a; b] is selected. Note that the center c and the half-width of the

interval d are de�ned as follows,

c =

a+ b

2

; d =

b� a

2

:
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Figure 5.7: Left ends of the three polynomials for extreme eigenvalue problems.

100 degree 200 degree

� 0.0001 0.0002 0.0001 0.0002

Chebyshev I 0.2607 -0.1132 0.0359 -0.0229

Chebyshev II 0.5397 0.2359 0.1422 -0.0275

least-squares 0.6333 0.3673 0.1378 -0.0531

Table 5.3: Values of the three polynomials for extreme eigenvalue problems at selected points.

Using equation (5.3), the damping factor of a k-degree Chebyshev polynomial is given by the following

equation,

 �

 

d

c� �+

p

(c� �)

2

� d

2

!

k

=

 

b� a

b+ a� 2�+ 2

p

(a� �)(b� �)

!

k

: (5.4)

The degree of the polynomial is computed in such a way that the components associated with the unwanted

eigenvalues are reduced by a factor of 1=2, in other word, T (�

�

i

) � 1=2, i = 2; : : : ; n, see equation (5.2). By

de�nition, this means the damping factor  is 1=2. In practice, it is not unusual to have a�� < 10

�10

(b�a),

in which case, the above formula computes a k of 34657. Too avoiding computing polynomial of exceedingly

high order, we limit the highest degree of a polynomial to 200, which means if a� � � 3� 10

�6

(b � a) we

can achieve  = 1=2, otherwise we use a 200-degree polynomial.

Figure 5.7 shows the left end of three polynomials chosen for extreme eigenvalues. The interval to be

damped is [0:0001; 1]. The top half of the �gure shows three 100-degree polynomials and the bottom half

shows the same polynomials at 200-degree. The values of the polynomials at selected points are shown in

table 5.3. The values at 0:0001 is the same as the damping factors. From Figure 5.7 and Table 5.3 we can

see that there are signi�cant di�erences among the three polynomials. In particular, the damping factor

of the Chebyshev polynomial may di�er signi�cantly from the least-squares polynomial. However, since we

don't know how to estimate the damping factors of the Chebyshev polynomial of the second kind and the
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least-squares polynomial, using equation (5.4) for all three polynomials is a reasonable alternative.

Based on past experiences reported, for example, [6, 113], we know that the performance of the Chebyshev

polynomial does not depend strongly on the exact location of the boundary opposite to the wanted eigenvalue

so long as all unwanted eigenvalues are in the Chebyshev interval. In this study, all examples for extreme

eigenvalue problem are to �nd the smallest eigenvalues. In this case, the right end of the Chebyshev interval

is not as important as the left end. Thus we have decided to only test two choices for selecting the right end

b. They are,

1. Let b be the right end of the Gershgorin interval [51, 139]. This can be determined before the start of

the eigenvalue algorithm and used through-out.

2. Let b be the opposite extreme of the spectrum of the projected matrix H = V

T

AV . If the smallest

eigenvalue is sought and the eigenvalues of H are sorted in ascending order, then b = �

m

, the largest

eigenvalue of H , where m is the size of H .

In the second scheme, the interval does not cover all unwanted eigenvalues, it is possible that the com-

ponent corresponding to the largest eigenvalues will dominate the vector P (A)x. One strategy to reduce

the impact of this problem is to use only odd degree polynomials for extreme eigenvalue problems. Using

odd degree polynomials, the smallest eigenvalues of A and the largest eigenvalues are mapped to values with

di�erent signs. Since the Davidson method is e�ective in separating them, so long as this does not cause

overow in the oating-point numbers, the impact of this potential problem is limited. The same strategy

is also used in [6] where only odd degree Chebyshev polynomials are used to precondition linear system of

equations.

The value of �

m

is generally much smaller than the right-end of the Gershgorin interval. Given the same

left-end for the Chebyshev interval, using the second scheme for b will generate a polynomial with better

separation between the wanted eigenvalue and the nearby unwanted ones. This reects our emphasis on

eigenvalues near the wanted ones. We rely on the Davidson method to deal with the whole spectrum of A.

We have chosen three schemes for selecting the left end of the Chebyshev interval a. They are,

1. Let a = �

i

, where �

i

is an eigenvalue of the projected matrix H . The value �

1

is considered the next

eigenvalue sought. Usually 20 eigenvalues are computed. The �rst 5 of them could be good candidates.

Thus there are 5 choices for this option, a can be �

2

, �

3

, �

4

, �

5

, or �

6

.

2. Let a = �

p+1

, where p is the active window size used in algorithm 4.1. In the examples that will be

shown later, the basis size for the Davidson method is 20, the window size is 5 or the actual number

of wanted eigenpairs still to be computed. In this case, the value p decreases as number of eigenpairs

left becomes less than 5.

3. Choose a value for a so that the estimated damping factor under the given number of matrix-vector

multiplications is 1=2. This scheme always use a polynomial of degree 100. It compute the value of a

to ensure the damping factor is 1=2. Let � = 2

1=100

, the formula on damping factor, equation (5.4),

leads to the following equations.

a+ b� 2�+

p

(a+ b� 2�)

2

� (b� a)

2

� �(b� a)

(a+ b� 2�)

2

� (b� a)

2

� (�(b� a)� (a+ b� 2�))

2

2�(b� a)(a+ b� 2�) � (�

2

+ 1)(b� a)

2

(� + 1)

2

a � (�� 1)

2

b+ 4��:

In deriving the above inequalities, the following factor is also used, b > a > �. From the last equation,

we can compute a as follows,

a =

(�� 1)

2

b+ 4��

(� + 1)

2

:

As expressed in equation (5.1), an approximate eigenvector contains components of unwanted eigenvec-

tors, i.e., �

i

6= 0, i = 2; : : : ; n. To improve the quality of the approximation is to reduce the magnitude of

�

i

, i 6= 1, while maintaining k[�

1

; �

2

; : : : ; �

n

]k to be a constant. The Davidson method can be considered as
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Figure 5.8: High-degree Chebyshev polynomials on di�erent intervals.
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Chebyshev on [0.0001,1]
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0 1 2 x 10
−4

Original spectrum

−0.2 0 0.2 0.4 0.6 0.8 1
Chebyshev on [0.00001,1]

Figure 5.9: A dense spectrum transformed by Chebyshev polynomials on di�erent intervals.

good at damping components corresponding to far away eigenvalues, in other word, it is e�ective in reducing

the magnitude of �

n

; �

n�1

; : : :. One way of using the polynomials is to make them damp the components

corresponding to eigenvalues near the wanted eigenvalue, i.e., reducing �

2

; �

3

; : : :. Figures 5.1, 5.2 and 5.3

show that all three polynomials can be used to damp contributions from large range of eigenvalues. Fig-

ure 5.7 con�rms that the Chebyshev polynomials have the fastest growth rate outside the interval. Next we

will attempt to show how the selection of a might a�ect the behavior of Chebyshev polynomials near the

wanted eigenvalue.

Figures 5.8 and 5.9 o�er some intuition on which scheme might be better in improving the quality of
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a T

100

(10

�6

) T

100

(10

�5

) T

100

(10

�4

) T

100

(2� 10

�4

)

10

�3

0.9968 0.9685 0.7205 0.5095

10

�4

0.9903 0.9051 0.2607 -0.1132

10

�5

0.9820 0.8257 -0.2797 -0.7736

10

�6

0.9799 0.8054 -0.4166 -0.9385

10

�7

0.9797 0.8031 -0.4325 -0.9576

10

�8

0.9797 0.8028 -0.4341 -0.9595

a T

500

(10

�6

) T

500

(10

�5

) T

500

(10

�4

) T

500

(2� 10

�4

)

10

�3

0.9843 0.8531 0.1967 0.0352

10

�4

0.9510 0.5980 0.0001 -0.0001

10

�5

0.8505 0.0840 -0.0837 0.0268

10

�6

0.6471 -0.6411 -0.5533 0.0011

10

�7

0.5532 -0.9518 -0.7907 -0.0287

10

�8

0.5401 -0.9947 -0.8241 -0.0332

Table 5.4: Values of the Chebyshev polynomial with di�erent intervals.

the eigenvector. Assuming the wanted eigenvalue is 0, the closest unwanted one is 10

�6

and the largest

eigenvalue is 1. The value of the Chebyshev polynomial of degree 100 and degree 500 at the point x = 10

�6

is shown in table 5.4. One obvious trend in �gure 5.8 and table 5.4 is that T (10

�6

) is smaller as a becomes

closer to 0. The optimal case in terms of reducing the magnitude of T (10

�6

) is to have T (10

�6

) equal to

0 which is possible by increasing the degree of the Chebyshev polynomial and adjusting the left end of the

Chebyshev interval. However, as we decrease the value of T (10

�6

), the value of the polynomial at other

points may start to increase. For example, when a is 10

�8

, T

500

(10

�5

) is close to -1.

Figure 5.9 shows how the lower end of the spectrum is transformed with Chebyshev polynomials on

di�erent intervals. We assume that the original spectrum is uniform in the range of [0; 0:0002], and only

show how the 201 eigenvalues in this range is transformed in the �gure. The polynomials used in this plot are

the 500-degree Chebyshev polynomials shown in �gure 5.8 and table 5.4, they transform the 0 eigenvalue of

the original matrix into 1. As the lower end of the Chebyshev interval becomes closer to 10

�6

, the separation

between between 1 and the rest of the transformed spectrum becomes larger. This observation mirrors the

above observation on the value of the Chebyshev polynomial at 10

�6

. By increasing the gap between the

wanted eigenvalue and the rest, the Lanczos method or the Davidson method can resolve the transformed

spectrum much easier than the original one.

If the approximate eigenvector is a linear combination of the �rst two exact eigenvectors, it is clear that

the Chebyshev interval should be chosen to minimize jT (10

�6

)j. However, often the approximate eigenvector

is a linear combination of a large number of eigenvectors. How to choose a to reduce the residual norm is not

nearly as clear as in this trivial case. If the contributions from a few closest eigenvalues does not dominate

the error in the approximate eigenvector, then it is more bene�cial to choose a slightly larger than 10

�6

,

e.g., a = 10

�5

in �gure 5.9. In the numerical experiment to be conducted later, we will attempt to identify

an e�ective strategy for selecting a.

Denote the interval for the Kernel polynomial by [a

1

; b

2

], and the 2 intervals for the 2-interval least-

squares polynomial as [a

1

; b

1

] and [a

2

; b

2

]. The interval selection schemes described earlier in this section are

applied to the Kernel polynomial and the 2-interval least-squares polynomial as follows.

� Selection of a

1

and b

2

,

1. Let a

1

and b

2

be the left and right ends of the Gershgorin interval.

2. Let a

1

and b

2

be the smallest and the largest eigenvalue of H

m

.

� To simplify the selection of b

1

and a

2

when use the two-interval least-squares polynomial, we use the

the following relation so that we only need to select a value for a

2

, � � b

1

= a

2

� �, where � is the

current approximation of the eigenvalue. The choice of a

2

given � and b

2

can be made using the same
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techniques as selecting a for the one-interval polynomials. It is possible that b

1

is less or equal to a

1

in some cases. If this is true, we will revert back to use one-interval least-square polynomial.

5.5 Polynomials for puri�cation

This section will use some examples to demonstrate how the above mentioned polynomials work as the

puri�cation step of an eigenvalue method. The hybrid eigenvalue method we build alternates between the

Davidson method and one of the three polynomial methods mentioned above. The Davidson method is

immediately restarted if the residual norm has reduced by a factor of 0.6 since last restart, otherwise the

polynomial method is invoked before restarting the Davidson method. The Davidson method compute a

block of Ritz values and Ritz vectors before restart. When use a polynomial method, we need to make a

choice as which ones we would apply the polynomial on. Our �rst scenario tries to preserve the structure of

the thick-restarted Davidson method. It only applies the polynomial on the �rst Ritz vector and appends the

resulting vector at end of the input vectors. More speci�cally, the thick-restarted Davidson method retains

a number of Ritz vectors, say, t, and a block of residual vectors corresponding to the �rst few Ritz pairs.

The Davidson method essentially restarts at step t and tries to incorporate the residual vectors in its basis.

This hybrid scheme increase the number of new vectors to be included in the basis by one.

The �rst example uses a matrix from the Harwell-Boeing collection called 1138BUS [37]. It has 1138

rows and 4054 nonzero elements if stored in CSR format [115]. We seek to �nd the 5 smallest eigenvalues

starting with one initial guess of [1; 1; : : : ; 1]

T

. As before, the maximum basis size is 20, and the tolerance

on the residual norm is 10

�12

kAk

F

which is 10

�7

in this case. Without preconditioning, the thick-restarted

Davidson method can �nd 3 eigenpairs in 100,000 matrix-vector multiplications. The hybrid method that

produced results shown in table 5.5 alternates between the unpreconditioned Davidson method and one of

the three polynomials for extreme eigenvalue problems. There are 7 di�erent choices used for a, of which

5 are based on selection scheme 1 discussed above. The row headed by �

p+1

refers to the selection scheme

2, and the last row, �



refers to the third scheme where a is chosen to ensure that the damping factor is

1=2. The �xed b case uses the right end of the Gershgorin interval as b, and the dynamic b refers to the

case of using �

m

as b. Three columns are presented for each case, the �rst column, headed with \MATVEC

(total)", is the total number of matrix-vector multiplications used to compute the �ve eigenpairs, the second

column, headed with \MATVEC (Davidson)", is the number of matrix-vector multiplications used in the

Davidson method, and the third one, headed with \time (sec)" is the total execution time in seconds. We

run this test on an SGI Challenge with MIPS 4400 processors. The machines used have more than 512 MB

real memory. Our test problem �t into the main memory.

A glance at table 5.5 reveals that let a = �

6

and use the �xed b with the Chebyshev polynomial of the �rst

kind converges in the least number of matrix-vector multiplications. Overall the two cases using Chebyshev

polynomial with �xed b and a = �

4

or �

5

use the least amount of CPU time to reach convergence.

One alternative to applying a polynomial on one Ritz vector is to apply the polynomial on all the Ritz

vectors. In the thick-restarted Davidson method, we save a number of Ritz vectors, x

i

, and the corresponding

Ax

i

at restart. If we apply a polynomial on all these Ritz vectors, the corresponding Ax

i

are no longer useful.

This increases the number of matrix-vector multiplications used by the Davidson method. More importantly,

the number of matrix-vector multiplications used to build the polynomial is signi�cantly more in this scheme

than in the previous case. Table 5.6 has the results of applying this hybrid eigenvalue method on 1138BUS.

Compared with table 5.5, it is clear that many more matrix-vector multiplications are used in this scheme.

In addition, table 5.6 shows that there are a number of cases where this hybrid method did not �nd all 5

eigenpairs in 200,000 matrix-vector multiplications. For these cases, the \MATVEC (total)" column appears

as > 200000 and the \MATVEC (Davidson)" column contains a negative number that indicates the number

of eigenpairs computed using 200,000 matrix-vector multiplications.

The best two cases in table 5.6 are using the Chebyshev polynomial and the least-squares polynomials

with a = �

6

and dynamic b. These two cases use the same CPU time to reach convergence. However the

Chebyshev polynomial case uses slightly less matrix-vector multiplications. In this test, using dynamic b is

generally better than using �xed b which is di�erent from the case where puri�cation is applied on one Ritz

vector, see table 5.5.

The smallest number of matrix-vector in table 5.6 is 113311, the corresponding time is 35.8 seconds.
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Chebyshev polynomial of the 1st kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

42788 3724 24.7 64917 5073 35.8

�

3

33429 3116 19.7 42391 3925 24.8

�

4

26750 2912 16.8 44187 4133 26.0

�

5

25642 3051 16.8 35956 3796 22.3

�

6

25082 3233 17.0 34697 3794 21.8

�

p+1

33353 3642 21.0 37941 3906 23.2

�



26406 3896 19.2 37580 5008 25.9

Chebyshev polynomial of the 2nd kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

34659 3146 20.2 52048 3936 28.3

�

3

32291 3056 19.1 54693 4386 30.3

�

4

35616 3406 21.2 48276 4106 27.4

�

5

37094 3676 22.3 50061 4496 29.0

�

6

37953 3916 23.3 48977 4746 29.2

�

p+1

35528 3756 22.0 41099 4096 24.8

�



44366 5596 29.8 38379 4866 25.8

least-squares polynomial on one interval

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

51457 3986 28.4 58709 4367 31.9

�

3

48466 3836 26.9 55415 4386 30.7

�

4

46388 3967 26.5 55263 4666 31.4

�

5

47543 4171 27.4 54153 4696 31.0

�

6

43891 4411 26.6 54013 5146 32.1

�

p+1

42270 4106 25.3 50917 4727 29.9

�



50595 6276 33.7 40957 5136 27.4

Table 5.5: Results of using polynomial puri�cation with the Davidson method on 1138BUS.

The smallest number of matrix-vector multiplications in table 5.5 is 25082 and the corresponding time

is 17 seconds. Considering the dramatic di�erences in number of matrix-vector multiplications between

tables 5.5 and 5.6, the di�erences in time is relatively small. This is because the majority of the matrix-

vector multiplications are done on a large block of vectors which could be made more e�cient compared to

multiplying one single vector. Comparing tables 5.5 and 5.6, we see that the matrix-vector multiplications

used by the Davidson method is signi�cantly less in the second case. On the environments where the matrix-

vector multiplication on a block of vectors is relatively cheap, using more block matrix-vector multiplication

to reduce the number of steps taken in the Davidson method could potentially reduce the total execution

time. Under this circumstance, applying the polynomials on all Ritz vectors could be a more e�ective

alternative.

The two kinds of Chebyshev polynomial and the least-squares polynomials are computed through three-

term recurrences which means the last three polynomials are available without extra work. If we only give one

vector v to the polynomial routines, we could get three di�erent results, P

k

(A)v, P

k�1

(A)v and P

k�2

(A)v.

Instead of only adding P

k

(A)v as new input vectors to the Davidson routine, we could use two or three

of them. Table 5.7 shows the results of giving the �rst two to the Davidson routine, and table 5.8 shows
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Chebyshev polynomial of the 1st kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

>200000 -3 - >200000 -3 -

�

3

>200000 -3 - >200000 -3 -

�

4

>200000 -3 - 160853 2937 48.8

�

5

>200000 -3 - 180587 3171 54.4

�

6

153702 3420 47.9 113311 2882 35.8

�

p+1

>200000 -4 - 184306 3535 56.1

�



>200000 -3 - >200000 -3 -

Chebyshev polynomial of the 2nd kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

192249 2466 56.2 150006 2265 44.7

�

3

>200000 -3 - 145180 2466 43.8

�

4

>200000 -3 - 130925 2577 40.1

�

5

158157 2947 48.0 127278 2769 39.4

�

6

142940 3064 44.1 128572 3019 40.2

�

p+1

158868 3064 48.3 143397 3147 44.4

�



191437 4250 59.1 170904 4133 53.5

least-squares polynomial on one interval

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

176501 2528 51.1 145447 2392 42.8

�

3

136493 2315 40.2 128051 2321 38.1

�

4

150863 2847 45.0 125682 2427 37.5

�

5

142009 2837 42.6 117970 2712 36.0

�

6

132885 2964 40.3 114823 2997 35.8

�

p+1

140368 3132 42.7 119850 2898 36.8

�



>200000 -3 - 142603 3774 44.4

Table 5.6: Results of applying polynomial puri�cation on all Ritz vectors when restart.

the results of using all three of them. Overall, all three polynomials bene�ted from using more than one

output vectors. Among them, the least-squares polynomial bene�ted the most. The execution time of the

hybrid method decreased from table 5.5 to table 5.8 for most of the cases. Overall, the best combination for

each polynomial is shown in table 5.9. In the table, the numbers 2 and 3 indicates the number of output

polynomials used. Overall, the hybrid method using the last three least-squares polynomials is the most

successful scheme tested. This best scheme uses dynamic b and a = �

2

. It computed the �ve smallest

eigenvalues of 1138BUS with 16,863 matrix-vector multiplications. This is considerably better than using

the Davidson method alone which only computed 3 eigenpairs in 100,000 matrix-vector multiplications.

To test the polynomials for interior eigenvalues, we have chosen to �nd 5 eigenvalues of PLAT1919 near

0.0001 as the test case [37]. The maximum basis size is again 20 and the tolerance on the residual norm

is 10

�12

kAk

F

= 2 � 10

�11

. The only starting vector for the Davidson method is [1; 1; : : : ; 1]

T

as before.

The Davidson method for interior eigenvalue problem restarts with 10 Ritz vectors whose corresponding

Ritz values are close to 0.0001. Since the Rayleigh-Ritz projection algorithm does not possess the same

optimality property for interior Ritz values as for extreme eigenvalues, the behavior of the hybrid method

behaves very di�erently from the extreme eigenvalue case. We have repeated all 126 di�erent combinations
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Chebyshev polynomial of the 1st kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

46403 3940 26.1 41621 3872 24.2

�

3

37278 3533 21.9 32982 3215 19.5

�

4

32428 3197 19.3 25313 2958 16.2

�

5

28355 3093 17.6 25315 3029 16.3

�

6

27748 3147 17.5 21865 2927 14.9

�

p+1

41323 3840 24.0 34375 3603 20.9

�



29908 4277 21.0 24003 3575 17.2

Chebyshev polynomial of the 2nd kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

20429 2145 12.5 18824 2057 11.7

�

3

21314 2377 13.4 18751 2139 11.9

�

4

21329 2507 13.7 20047 2357 12.8

�

5

20493 2540 13.5 18377 2445 12.4

�

6

20861 2627 13.8 18487 2597 12.9

�

p+1

21740 2683 14.2 17722 2487 12.3

�



25698 3747 18.3 19210 3038 14.2

least-squares polynomial on one interval

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

18868 1968 11.5 19655 2029 11.9

�

3

19443 2157 12.2 19593 2211 12.3

�

4

18362 2275 12.1 18183 2237 11.9

�

5

18788 2261 12.2 18527 2357 12.3

�

6

19076 2368 12.5 19357 2690 13.4

�

p+1

18151 2337 12.1 18935 2468 12.7

�



21459 3203 15.4 18760 2897 13.7

Table 5.7: Results of polynomial puri�cation where the last two polynomials are used.

of parameters shown in tables 5.5, 5.7 and 5.8, table 5.10 only shows the cases where the hybrid method

successfully computed 5 eigenpairs around 0.0001 within 400,000 matrix-vector multiplications. In table 5.10,

the column headed byN

p

is the number of output vectors used and the \least-squares" refers to the 2-interval

least-squares polynomial. For the Kernel polynomials we only need to determine the outer boundaries,

however, we use one of the seven choices for inner boundaries of the two-interval least-squares polynomial to

determine the degree of the Kernel polynomial. Using �



as inner boundary indicates that the degree of the

polynomial is set to 100. From this table we see that the only successful scheme for selecting the boundaries

of the intervals is to use �



as inner boundaries and use the boundaries of the Gershgorin interval as the

outer.

The intermediate approximate solution to an interior eigenvalue can be either larger or smaller than

the �nal solution. However for extreme eigenvalues, the approximate eigenvalues of the Davidson method

approaches the exact solution from the inside of the spectrum. This di�erence could be the reason why

the successful schemes for selecting the boundaries for the extreme eigenvalue problems are not successful

schemes for selecting inner boundaries for the 2-interval least-squares polynomials. Generally, using �



to

compute the inner boundaries given more consistent answer to the inner boundaries. Thus it is a more
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Chebyshev polynomial of the 1st kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

43097 3693 24.2 52168 4300 28.9

�

3

35242 3259 20.4 40430 3610 23.0

�

4

28483 3116 17.7 28617 3158 17.8

�

5

27375 3152 17.3 24953 3050 16.2

�

6

26510 3123 16.9 22794 3130 15.7

�

p+1

31849 3391 19.5 34535 3750 21.3

�



29458 4328 20.8 23496 3650 17.1

Chebyshev polynomial of the 2nd kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

22518 2358 13.8 18056 1990 11.2

�

3

21120 2403 13.4 17527 2102 11.3

�

4

21761 2561 14.0 19395 2288 12.5

�

5

21458 2660 14.0 19015 2488 12.8

�

6

20867 2709 14.0 18284 2548 12.7

�

p+1

20536 2661 13.7 18492 2570 12.8

�



26885 3960 19.1 20612 3163 15.0

least-squares polynomial on one interval

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

19974 2045 12.1 16863 1858 10.5

�

3

19996 2059 12.1 17655 2204 11.6

�

4

19186 2218 12.2 18591 2249 12.0

�

5

18633 2438 12.5 17173 2300 11.6

�

6

21009 2468 13.4 17600 2488 12.2

�

p+1

20326 2468 13.1 17419 2428 12.0

�



25263 3479 17.3 22534 3129 15.5

Table 5.8: Results of polynomial puri�cation where the last three polynomials are used.

�xed b dynamic b

Chebyshev I 2, a = �

6

2, a = �

6

Chebyshev II 2, a = �

2

3, a = �

2

least-squares 2, a = �

2

3, a = �

2

Table 5.9: The best choices for di�erent polynomials in hybrid method.

inner outer MATVEC MATVEC time

Polynomial N

p

boundaries boundaries (total) (Davidson) (sec)

least-squares 2 �



�xed 182471 19201 267.3

least-squares 3 �



�xed 231633 23889 336.6

Kernel 2 �



�xed 182471 19201 267.4

Table 5.10: Hybrid methods that successful computed 5 eigenvalues around 0.0001 for PLAT1919.
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MATVEC MATVEC time

preconditioner (total) (Davidson) (sec)

CG(A� �I) 12956 71 5.8

CG(A� �I + xx

T

) 13356 73 6.4

CG(A� �I � 2x(Ax)

T

) 13823 76 6.7

CG((I � xx

T

)(A� �I)(I � xx

T

)) 13272 72 7.0

Chebyshev II (a = �

�

, �xed b) 4181866 58385 1690

Table 5.11: Finding 5 smallest eigenvalues of 1138BUS with preconditioners that only require matrix-vector

multiplications.

suitable choice compare to the other schemes.

The number of matrix-vector multiplication taken to compute this desired eigenvalues is very high com-

pared with the matrix size. Nevertheless, since we can not even compute one eigenpair around with the plain

Davidson method, �nding 5 of them with 182,471 matrix-vector multiplications is a signi�cant improvement.

5.6 Polynomial preconditioning

In this section, polynomials are used as preconditioners to the Davidson method, see algorithm 4.1. The

�rst modi�cation was to simply replace step 2.d.iii of algorithm 4.1 with

Z = P (A)r:

This preconditioning scheme is di�erent from all previous schemes mentioned in this thesis since it does not

attempt to solve a linear system.

An advantage of using polynomial preconditioning is that it is easy. Using Krylov methods as precon-

ditioners is similar to polynomial preconditioners. For this reason, we will also show examples of Krylov

iterative methods as preconditioners in this section.

For numerical testing, we apply the preconditioners to the two test problems used before, i.e., the extreme

eigenvalues of 1138BUS and interior eigenvalues of PLAT1919. The convergence tolerance and the maximum

basis size for the Davidson method are the same as before. Unlike the hybrid method case where the polyno-

mial puri�cation step may be skipped if the Davidson iteration is converging rapidly, the preconditioning step

is always executed. However, since the workspace required by the polynomial routines is the unused portion

of the basis vectors, it is possible that there is not enough workspace to carry out the polynomial procedure,

which happens when the basis is almost full. In this case, no preconditioning is performed, we simply copy

the input vectors to the output array. In addition, to ensure that there is a reasonable eigenvalue estimate

to establish the intervals for the polynomial procedures, the polynomial preconditioning routines are not

invoked for the �rst few steps of the Davidson iteration. In the tests shown, the polynomial preconditioning

procedure is not used until the basis size is 10 in the Davidson method.

Table 5.11 shows the results of computing the smallest eigenvalues of the 1138BUS matrix using the

polynomial preconditioner and four CG based preconditioners. The preconditioners CG(A � �I), CG(A �

�I+xx

T

), CG(A� �I�2x(Ax)

T

) and CG((I �xx

T

)(A� �I)(I�xx

T

)) use the Conjugate Gradient method

to compute an approximate solution of B

�1

r where the matrix B is the matrix in the parenthesis, see

Chapter 3 for the origin of these matrices. The maximum number of matrix-vector multiplications is set to

200 for CG. The iteration is terminated when the residual norm is reduced by one order of magnitude or

200 matrix-vector multiplications have been used. Compared with the best results reported in tables 5.5,

5.7 and 5.8, the Davidson method with one of the four CG preconditioners takes signi�cantly less time and

fewer matrix-vector multiplications than the best hybrid method scheme. The total numbers of matrix-vector

multiplications used by the four CG schemes are not very di�erent, and the simplest of the four, CG(A��I),

is slightly more e�ective than the others.

In this test, the polynomial preconditioners tested include all 42 schemes shown in table 5.5. In table 5.11

only one case is shown because it is the only case where the polynomial preconditioner scheme is successful
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Chebyshev polynomial of the 1st kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

114642 1443 45.3 170118 2135 66.9

�

3

55442 713 21.9 82662 1053 32.4

�

4

27664 379 10.9 44608 599 17.6

�

5

26264 374 10.4 41017 571 16.2

�

6

28567 417 11.4 46002 659 18.3

�

p+1

93490 1225 36.9 150120 1953 59.0

�



21970 559 9.4 34494 869 14.6

Chebyshev polynomial of the 2nd kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

21348 283 8.4 35999 467 14.1

�

3

20354 279 8.0 35470 469 13.9

�

4

22556 319 8.9 36085 491 14.2

�

5

21372 319 8.5 34670 489 13.7

�

6

21790 339 8.7 34690 509 13.8

�

p+1

21790 339 8.7 34690 509 13.8

�



27719 701 11.8 41051 1031 17.4

least-squares polynomial on one interval

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

27165 357 10.8 40807 527 16.1

�

3

25930 349 10.3 42045 551 16.6

�

4

27097 377 10.8 43082 579 17.0

�

5

26062 379 10.4 44191 627 17.5

�

6

25785 391 10.3 44364 639 17.6

�

p+1

26388 399 10.6 43359 627 17.2

�



31353 791 13.3 50745 1271 21.4

Table 5.12: Results of applying the Davidson method on 1138BUS with the modi�ed polynomial precondi-

tioner.

in �nding all �ve smallest eigenvalues of 1138BUS. This indicates that appending P (A)r to the basis of the

Davidson method is not a good option. An obvious alternative is to apply the polynomial on the current

approximate eigenvector, i.e., append P (A)x to the Davidson basis. In fact, we found that a more robust

approach is to append both r and P (a)x to the Davidson basis. Table 5.12 shows the results of this modi�ed

preconditioning scheme.

To solve the 1138BUS problem, the most e�ective hybrid scheme tested used 10.5 seconds, 16,863 matrix-

vector multiplications, see table 5.8. The Davidson method with the best modi�ed polynomial preconditioner

used only 8.0 seconds, 20,354 matrix-vector multiplications, see table 5.12. The modi�ed preconditioning

scheme uses less time but more matrix-vector multiplications to solve the same problem. This is because

the matrix-vector multiplication is fairly inexpensive with 1138BUS. This scheme trades the number of steps

used in the Davidson method with the number of matrix-vector used in the polynomial methods. Since one

Davidson step in more expensive than one step in the polynomial method, the Davidson method with this

modi�ed preconditioner can reduce the execution time. However, Compared with the CG preconditioners,

the modi�ed polynomial preconditioning still uses more time and more matrix-vector multiplications.
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MATVEC MATVEC time

preconditioner (total) (Davidson) (sec)

CG(A� �I) 591090 3090 747

CG(A� �I + xx

T

) 373783 2183 600

CG(A� �I � 2x(Ax)

T

) 249035 1435 407

CG((I � xx

T

)(A� �I)(I � xx

T

)) 112219 619 193

Table 5.13: The results of �nding 5 interior eigenvalues of PLAT1919 with preconditioners that only require

matrix-vector multiplications.

inner outer MATVEC MATVEC time

Polynomial boundaries boundaries (total) (Davidson) (sec)

least-squares �

3

dynamic 400963 6439 505

Kernel �

3

dynamic 327854 4147 414

Kernel �

4

dynamic 359443 4583 467

Kernel �

6

dynamic 390790 5003 511

Table 5.14: The modi�ed polynomial preconditioning schemes that successfully computed the desired eigen-

pairs of PLAT1919.

Among the three polynomials, the Chebyshev polynomial of the second kind shows the best performance

gain. Also, using �xed b is better than using dynamic b for preconditioning.

Table 5.13 shows the results of applying the Davidson method with matrix-vector multiplication based

preconditioners on PLAT1919 to �nd 5 eigenpairs around 0.0001. Similar to table 5.11, we only show

the successful cases. The preconditioning schemes that compute P (A)r did not reach convergence within

400,000 matrix-vector multiplications. In this case, the four CG preconditioners uses signi�cantly di�erent

number of matrix-vector multiplications and CPU time. The best among the four preconditioners is the

Jacobi-Davidson preconditioning scheme.

Table 5.14 shows the results of using the modi�ed preconditioning scheme on the PLAT1919 test prob-

lem. Again, we only show those cases where the preconditioned Davidson method were able to compute 5

eigenpairs within 400,000 matrix-vector multiplications. Among the cases shown in table 5.14, we see that

using Kernel polynomial with dynamic outer boundaries is relatively more successful than other schemes.

Compared to the most successful hybrid methods, see table 5.10, we observe that the modi�ed polynomial

preconditioner is not as e�ective as the hybrid method. The shortest time in table 5.10 is 267 seconds which

is considerable less than the shortest time in table 5.14, 414 seconds. Similar to the 1138BUS case, the

modi�ed preconditioning scheme is e�ective in reducing the number of steps taken by the Davidson method.

However, the reduction come with the increase in total number of matrix-vector multiplications used. Since

the matrix-vector multiplication is more expensive with PLAT1919, the overall CPU time increased in this

case. The best result from the CG preconditioners is again considerably better than the best results from

using the �ve polynomials.

Note that it is probably more appropriate to call this modi�ed preconditioning scheme a hybrid method,

since it does not resemble the common form of the eigen-system preconditioning or linear system precon-

ditioning. This hybrid method can be considered as one extreme form since a polynomial step is inserted

after every step of the Davidson iteration. The hybrid scheme presented in previous section only invokes a

polynomial procedure after the Davidson method has built a full basis. From the two tests performed here,

we see that invoking the polynomial method more often is only bene�cial if the matrix-vector multiplication

is inexpensive.
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5.7 Polynomial spectrum transformation

The essence of polynomial spectrum transformation technique is to replace the matrix-vector multiplication of

the Davidson algorithm with a polynomial in A. However, since we have to perform Rayleigh-Ritz projection

to compute the actual eigenvalue of A and to estimate parameters required to de�ne the polynomial, the

overall structure of the actual eigenvalue routine is very similar to a hybrid method. Our implementation of

the polynomial spectrum transformation technique alternates between the Davidson iteration on the original

eigenvalue problem and the Davidson iteration on the transformed eigenvalue problem. The iterations on the

original eigenvalue problem are used to compute the eigenvalue of A after the transformed eigenvalue problem

has converged and compute the approximate eigenvalues and eigenvectors to be used de�ne the transformed

eigenvalue problem. Similar to the hybrid method, if the iteration on the original problem is e�ective in

reducing the residual norm, than we restart to continue the iteration on the original problem. However if the

residual norm is decreasing slowly, or the residual norms at the end of last two iterations are both larger than

the previous one, then the routine switches to the Davidson method on a transformed eigenvalue problem.

The polynomials used for this routine are the same as those used in the hybrid methods and the polynomial

preconditioning. The schemes for selecting the intervals are the same as in the polynomial puri�cation case.

Similar to the preconditioning case, the polynomial routines also use the unoccupied part of the basis

vectors as workspace. This means that the actual basis size for the transformed Davidson iterations is

1 or 2 less than the basis size for the Davidson iteration on the original eigenvalue problem. The two

Chebyshev polynomial routines and the two least-squares polynomial routines require two extra vectors for

their computation and the Kernel polynomial routine requires three extra vectors. When the basis size for

the Davidson method without any transformation is 20, if the Kernel polynomial is used to perform the

spectrum transformation, the actual basis size is 18, if one of the other four polynomials is used, the basis

size is 19. The Davidson iteration on the transformed eigenvalue problem is terminated if the residual norm

of the largest eigenvalue of the transformed matrix is less than 10

�10

, or if the residual norm increases

compared to previous iteration. Thick restart is applied to the transformed Davidson iterations as well. As

before, 10 Ritz vectors corresponding to the 10 largest Ritz values are saved as starting vectors for the new

Davidson iteration.

We again use 1138BUS as the test matrix for extreme eigenvalue problem to show how the polynomial

spectrum transformation technique works. The same residual tolerance and the maximum basis size are

used as before. Table 5.15 shows the results of using the Davidson method with the polynomial spectrum

transformation. This table shows all 42 di�erent combinations of the parameters. Among the 7 schemes for

selecting a, the most successful one in this case is a = �



. Using the dynamic b is more e�ective for the

least-squares polynomial, while using the �xed b is more e�ective for the two kinds of Chebyshev polynomials.

Overall, the spectrum transformation using the least-squares polynomial with a = �



and b = �

m

is the

most e�ective choice shown in table 5.15.

Majority of the 42 cases shown in table 5.15 are signi�cantly better than unpreconditioned Davidson

method on the same eigenvalue problem. However, the best hybrid schemes presented in tables 5.5, 5.7

and 5.8, use less time and fewer matrix-vector multiplications to solve the same problem as the best results

from the polynomial spectrum transformation technique. In general, the spectrum transformation technique

present also use more time than the modi�ed polynomial preconditioning scheme shown in the previous

section.

For interior eigenvalue problems, we were unable to have the polynomial spectrum transformation scheme

to converge for the PLAT1919 problem within 400,000 matrix-vector multiplications. For this reason, we

switched to the matrix PLAT362 which has similar origin as the matrix PLAT1919. We again seek to �nd

5 eigenvalues near 0.0001 with residual tolerance 10

�12

jjAjj

F

. For comparing the e�ectiveness of the poly-

nomial spectrum transformation scheme, we also repeated the test with the four CG based preconditioners.

The results with CG preconditioners are shown in table 5.16. The cases where the polynomial spectrum

transformation scheme reached convergence within 400,000 matrix-vector multiplications are shown in ta-

ble 5.17.

The best time shown in table 5.17 is 6.9 seconds to �nd 5 interior eigenvalues of PLAT362. The time

using the CG(A��I+xx

T

) to solve the same problem is 1.7 seconds. It is clear that using CG preconditioner

with the Davidson method is more e�ective in this case. In fact, the Davidson method with three out of the
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Chebyshev polynomial of the 1st kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

93744 184 36.2 84072 284 32.8

�

3

50942 184 20.4 >100000 -4 -

�

4

41640 214 16.6 44137 334 17.9

�

5

43112 224 17.3 77326 444 31.5

�

6

37250 224 15.6 35022 364 14.7

�

p+1

101372 224 39.7 72885 424 29.0

�



32405 184 13.3 35260 244 14.5

Chebyshev polynomial of the 2nd kind

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

42374 174 17.0 >100000 -4 -

�

3

42973 294 17.1 102114 584 40.3

�

4

42695 304 17.2 73266 604 29.2

�

5

43636 224 17.7 74095 474 29.8

�

6

46964 374 19.2 >100000 -4 -

�

p+1

45537 314 18.5 >100000 -3 -

�



40665 284 17.0 49180 284 20.3

least-squares polynomial on one interval

�xed b dynamic b

MATVEC MATVEC time MATVEC MATVEC time

a (total) (Davidson) (sec) (total) (Davidson) (sec)

�

2

41438 184 16.5 63111 294 24.6

�

3

38788 214 15.3 36202 214 14.3

�

4

41564 204 16.6 57664 284 22.8

�

5

41096 254 16.6 36215 295 14.8

�

6

43322 294 17.6 52316 264 21.4

�

p+1

42966 294 17.5 63078 304 25.5

�



34198 184 14.1 31310 234 12.8

Table 5.15: Results of using polynomial spectrum transformation with the Davidson method on 1138BUS.

MATVEC MATVEC time

preconditioner (total) (Davidson) (sec)

CG(A� �I) 9238 52 2.3

CG(A� �I + xx

T

) 6201 37 1.7

CG(A� �I � 2x(Ax)

T

) 16244 88 4.4

CG((I � xx

T

)(A� �I)(I � xx

T

)) 619819 3419 173.3

Table 5.16: Results of �nding 5 interior eigenvalues of PLAT362 with CG preconditioners.

100



inner outer MATVEC MATVEC time

Polynomial boundaries boundaries (total) (Davidson) (sec)

least-squares �

3

dynamic 400963 6439 505.0

Kernel �

2

dynamic 253583 1393 58.6

Kernel �

3

dynamic 147595 878 34.4

Kernel �

4

dynamic 28427 341 6.9

Kernel �

6

dynamic 198166 1454 46.8

Kernel �



dynamic 201929 991 46.8

Table 5.17: The polynomial spectrum transformation schemes that successfully computed the desired eigen-

pairs of PLAT362.

MATVEC MATVEC time

preconditioner (total) (Davidson) (sec)

NONE 3758 3758 421

SOR 1489 1489 297

CG(A� �I) 51648 307 1272

CG(A� �I + xx

T

) 44054 254 1122

CG(A� �I � 2x(Ax)

T

) 46610 266 1209

CG((I � xx

T

)(A� �I)(I � xx

T

)) >1,800,000 -9 -

Hybrid methods with polynomials for extreme eigenvalues

MATVEC MATVEC time

Polynomial N

p

a b (total) (Davidson) (sec)

Chebyshev I 1 �

5

�xed 4139 3881 432

Chebyshev II 1 �



�xed 4272 3850 432

least-squares 1 �

2

�xed 4272 3850 432

Hybrid methods with polynomials for interior eigenvalues

inner outer MATVEC MATVEC time

Polynomial N

p

boundaries boundaries (total) (Davidson) (sec)

least-squares 1 �



�xed 4272 3850 432

Kernel 1 �

2

�xed 4272 3850 432

Table 5.18: MATVEC and time used to �nd 60 smallest eigenvalues of the Si

6

test problem.

four CG preconditioners can solve the PLAT362 problem in less than 6.9 seconds.

Comparing table 5.13 with table 5.16 we see that the same preconditioners performs quite di�erently on

two similar eigenvalue problems. This dramatic di�erence could be due to the special nature of the interior

eigenvalue problem or due to some features of the preconditioners. At this moment, we don't yet know which

one in the main cause.

5.8 Computing a large number of extreme eigenvalues

The ultimate goal of this study is to use polynomials to improve the e�ciency of computing a large number

of extreme eigenvalues. To see how the polynomial schemes perform for this task we decided to conduct some

tests on the matrix generated from the Si

6

test case, see table 4.1. We compute 60 smallest eigenvalues from

the matrix starting with the lone initial guess [1; 1; : : : ; 1]

T

. To reduce the number of test cases, we have

decided to use the hybrid schemes discussed in section 5.5. There are a total of 210 possible test cases with 5

di�erent polynomials, see tables 5.5, 5.7, 5.8, and 5.10. We have chosen to show only the cases with shortest

execution time for each of the 5 polynomials in table 5.18. As references, we also show the matrix-vector
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multiplication and time required to solve the same problem with a small number of preconditioners. The

execution time shown here is gathered from a SGI challenge workstation. On the eigenvalue problem tested,

the Davidson method with SOR preconditioner is the only case where the execution time is less than the

unpreconditioned Davidson method. The four CG preconditioners are able to reduce the number of iterations

spent by the Davidson method, however, the preconditioning steps was too expensive to reduce the overall

execution time. The hybrid methods used more matrix-vector multiplications than the unpreconditioned

Davidson method. Because the matrix-vector multiplication is relatively expensive, the average number of

non-zero elements per row is about 37 for the Si

6

matrix, more CPU time is used by the hybrid methods

than the plain Davidson method.

There could be many reasons for the outcome of this test. For example, the hybrid methods may be not

e�ective for computing many eigenpairs, or, the hybrid schemes may not work well with the locking strategy,

or, simply the test problem may be a bad example to use. However this one example does not negate the

previous observations that polynomial methods can be used e�ectively to solve eigenvalue problems. What

this example does remind us is that continued research is required to improve the robustness of the hybrid

schemes.

5.9 Summary

In this chapter, we studied how to use polynomials to facilitate the Davidson method in computing eigenpairs

of large sparse matrices. Among the three techniques tested, the puri�cation technique is the most versatile

one. The hybrid methods that alternate between the Davidson iteration and the polynomial puri�cation

schemes are e�ective. Using polynomials as preconditioners for the Davidson method is found to be ine�ective

on the test problems. The polynomial spectrum transformation scheme has sound theoretical basis but in the

limited number of tests conducted, we were unable to surpass the hybrid scheme. Overall, the e�ectiveness

of all three di�erent techniques of using polynomials is sensitive to how parameters are selected.

The most successful hybrid method for extreme eigenvalue problems in our tests is the one that alternates

between the Davidson method and the least-squares polynomial. For this polynomial, the most successful

scheme for selecting the interval to build polynomials for extreme eigenvalue problem is to select the interval

as [�

2

; �

m

]. In the numerical tests, we also see that saving lower degree polynomials can also enhance the

performance of the hybrid methods, see table 5.9.

The test results for interior eigenvalue problems are not as extensive as the extreme eigenvalue case.

This is not because we have conducted fewer tests, but because there are fewer cases where the interior

eigenvalue problem was solved successfully. This underscores the need for better selection schemes for the

parameters of the polynomials used or better polynomials for interior eigenvalue problems. Based on the

available results, we see that the hybrid methods with the least-squares polynomial or the Kernel polynomial

in the puri�cation step solved the same test problem in about the same time. The best scheme for selecting

the inner boundaries for the two-interval least-squares polynomial is to set the boundaries far enough to

ensure a constant damping factor. The outer boundaries for the the least-squares polynomial and the Kernel

polynomial can simply be the end points of the Gershgorin interval. The experiments show that it is more

e�ective if the two highest degree polynomials generated by the polynomial routine are used, see table 5.10.

For the three eigenvalue problems tested in this chapter, the Davidson method with CG preconditioners

was able to reach convergence in less time than the best of the three types of polynomial schemes. This can

be partly blamed on the weakness of the interval selection schemes tested.

The results from the Si

6

test case, see table 5.18, show another aspect of the CG preconditioners and

the hybrid method. In this test problem, the CG preconditioners are too expensive for a good overall

performance. The polynomial schemes are ine�ective as well. But because the Davidson iterations are

e�ective in improving the quality of the solutions, the polynomial puri�cation step is rarely invoked which

automatically limits the damage that might be incurred by constructing a high-degree polynomial. In

comparison, the hybrid methods are more e�ective than the CG preconditioner in this case. However, the

two di�erent schemes both take more time to �nd the desired solution than the unpreconditioned Davidson

method.

In conclusion, if only matrix-vector multiplication is available, using a Krylov method as preconditioner

for the Davidson method is an e�ective approach. Hybrid method with polynomial puri�cation or polynomial
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spectrum transformation could be e�ective in some cases. For lack of good strategies of selecting parameters,

the polynomial based schemes are not competitive against Krylov methods on the problems tested.
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Chapter 6

Summary and Future Work

6.1 Summary

Our main goal in this thesis was to study ways to improve algorithms for large sparse eigenvalue problem. In

particular, the eigenvalue problems that require a large number of eigenvalues and corresponding eigenvectors,

for example, �nding 1000 eigenpairs of a 100; 000� 100; 000 matrix. These problems are challenging because

of two reasons. First, the matrices involved are too large for traditional QR approaches which were designed

for dense matrices. Second, the e�ective algorithms for sparse eigenvalue value problems are designed to

�nd only a few eigenpairs. We addressed this problem from three di�erent prospectives: seeking a sound

preconditioned algorithm for multiple eigenpairs, improving the preconditioning scheme, and studying the

use of polynomials in enhance the exibility of the eigenvalue routine.

Seeking a sound preconditioned algorithm for multiple eigenpairs. After evaluating eigenvalue

algorithms such as the QR method, the Lanczos algorithm, the Arnoldi method, and the Davidson method,

we come to the conclusion that the Arnoldi method and the Davidson method are the two most promising

algorithms for the task of �nd any eigenvalues and eigenvectors of large sparse matrices. In addition, we

also studied three di�erent variants of these two methods. Without preconditioning, it is clear that the �ve

methods are identical to each other if there is only one initial starting vector to all �ve methods, see section

2.4. If they also restart with same Ritz vectors, they will continue to produce the same basis and the same

approximate solutions. For this reason, the cheaper the algorithm is per step, the less time it will take to

�nd the same solution in exact arithmetic. The simplest algorithm among the �ve is the Arnoldi method.

Therefore, the Arnoldi method is the best if no preconditioning would be used. For symmetric matrices, if

there is only one initial guess, the Lanczos algorithm should be preferred.

The �ve methods behave di�erently when more than one initial guesses are provided or when �nite

precision arithmetic is used. Among the �ve methods compared, the Davidson method is the most stable

one because it has the least amount of cancelation error when building it basis. If fact, the new vector added

to the basis is orthogonal to the basis without preconditioning. Because of this, there are cases where the

Davidson method is preferred even though it is more expensive per step. For example, if the wanted smallest

eigenvalues have signi�cantly smaller separation than the largest eigenvalues, based on the experiences with

the Lanczos method, we know that the largest eigenvalues will converge quickly and cause orthogonality

problem in the basis. The same orthogonality problem can occur in the Arnoldi method though it is less

likely than in the Lanczos method, but the more stable Davidson method will be able to �nd the solution

without encounter the same di�culty. The same is true if there are interior eigenvalues that converge very

easily, as in the case of BCSSTK01.

With preconditioning, the �ve methods behave very di�erently from each other. The Davidson precon-

ditioning is regarded as an inexact-Newton method which means that it could work well when the precon-

ditioner is good. A theoretical study of preconditioned eigenvalue algorithms has not been conducted. We

took the approach of comparing the methods through numerical experiment. Based on our experimental

results, the Davidson method is by far the most e�ective one with all tested preconditioners.
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Improving preconditioning scheme. The preconditioning scheme of the Davidson method approxi-

mately solves a nearly singular equation, (A � �I)y = r, where r is the current residual vector, and � is

the current approximate eigenvalue. In the Rayleigh quotient iteration method for eigenvalue problems,

inversion of the same matrix was also required. From the study of Rayleigh quotient iteration, researchers

have noticed many problems when attempting to invert the matrix (A� �I) [36]. However, our experiment

shows that the Davidson method is still very e�ective. Based on this observation, we believe that the inexact

Newton approach is a sound basic preconditioning strategy though this particular Jacobian matrix may have

some undesirable properties.

We studied three di�erent Newton iterations for eigenvalue problems: the augmented Newton method of

Peters and Wilkinson [98], the constrained Newton method based on the framework presented in [142], and

the Jacobi-Davidson recurrence based on the Jacobi-Davidson preconditioning scheme [125]. The augmented

Newton scheme produces a Jacobian matrix that is larger than the size of the original matrix A. In attempting

to reduce the size of this linear system, we realized that there are a number of variations which are equivalent

to each other but have di�erent Jacobian matrices. From this analysis, we see that the Olsen preconditioning

scheme can be regarded as a Schur form of the augmented Newton scheme.

The Jacobian matrices of the di�erent variations of Newton method for eigenvalue problems can be used

as preconditioners in three ways.

� Develop specialized incomplete factorization scheme for the Jacobian matrix of the augmented Newton

scheme.

� Olsen preconditioning scheme which can be viewed as performing a regular preconditionerM � (A��I)

twice to improve the quality of the approximate solution.

� There are three Newton schemes whose Jacobian matrices can not be easily factorized. In this case,

a Krylov iterative solver or an approximate inverse can be used to approximately solve the precondi-

tioning equation.

We have performed experiment on most of the techniques mentioned above. For the limited number of

test cases studied, preconditioners based on Krylov iterative solvers are easy to use and fairly e�ective. There

are four di�erent linear systems that could be used with Krylov iterative solvers. They share the same right-

hand side, but have di�erent iteration matrices. The four matrices are: J

R

= (A��I), J

I

= (A��I+xx

T

),

J

C

= (A � �I � xx

T

(A + A

T

)), and J

J

= (I � xx

T

)(A � �I)(I � xx

T

). Each of these four di�erent linear

systems seems to have its own advantage. The condition number of J

R

is very small when � is far from any

exact eigenvalue. J

R

could potentially run into problems if � is very close to an accurate solution. Since

during most of the iterations, � is far from an accurate solution, the Davidson preconditioning scheme is

e�ective. It is possible for J

C

to have large condition number when � is far from convergence even though

it is shown to be well behaved near convergence. The matrix J

J

is designed to be singular which means a

Krylov method could �nd a solution to the linear system, but a di�erent kind of linear system solver may

fail to do so. In addition, it is generally harder to construct a preconditioner for a singular linear system.

Overall, using J

I

is the most prudent choice. In our tests, the condition number of J

I

is almost as small as

that of J

R

when � is far from any exact eigenvalue, and the condition number of J

I

does not grow without

a bound like that of J

R

when � converges toward a simple eigenvalue.

Using polynomials. Using polynomials for eigenvalue problems has a few advantages: they are fairly

easy to add to an projection based eigenvalue routine; they can improve the scalability of the eigenvalue

routine on parallel machines by reducing the number of dot-products needed. The main obstacle which

prevents the e�ective use of the polynomial schemes is that the user has to determine a certain number

of parameters in order to use them. In this thesis, we studied 14 di�erent choices of selecting parameters

for 5 di�erent polynomials. We tested three di�erent strategies of using these 5 polynomials. Overall,

we saw that using polynomials with the Davidson method can reduce the total number of matrix-vector

multiplications signi�cantly compared with the unpreconditioned Davidson method. The performances of

all three schemes are very sensitive to the choice of the parameters. Among the three di�erent ways of

using the polynomials, the puri�cation scheme is the most successful one on the two test problems. The

most successful parameter selection schemes are di�erent for the three di�erent ways of using polynomials.
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The most successful scheme for extreme eigenvalue problem is a hybrid method that uses the three highest

degree least-squares polynomials computed on the interval [�

2

; �

m

]. For interior eigenvalue problems, the

hybrid schemes with the two-interval least-squares polynomial and the Kernel polynomial use almost the

same amount of time in the best cases.

Since Krylov iterative solvers also build solutions in terms of polynomials of A, we compared the results

of using them as preconditioners to other polynomial schemes. The particular iterative method used is

the Conjugate Gradient (CG) method. The CG preconditioner is much more e�ective on the problems

tested than the polynomial preconditioning schemes. In terms execution time, the best results from using

polynomials puri�cation scheme can be comparable to the average case of the CG preconditioning.

In conclusion, we identi�ed the Davidson method to be the most e�ective choice for �nding multiple

eigenpairs of large sparse matrices. We have found di�erent preconditioning schemes that can avoid many

pitfalls of the Davidson preconditioning scheme. Among the preconditioners which use matrix-vector multi-

plications, our tests show that Krylov methods are e�ective and easy to use.

6.2 Future work

Overall we see preconditioned methods as an e�ective approach to solve eigenvalue problems. We would

continue to pursue the study of new preconditioning schemes and new preconditioners for eigenvalue problems

to further enhance the performance of eigenvalue methods. In the immediate future, we see two di�erent

directions.

The �rst is to build a high quality eigenvalue software. During this study, we have developed a signi�cant

number of codes to prove the concept and to conduct tests. One way of extending this research is to build

a coherent software package out of the existing codes. In building this package, a few issues need to be

addressed to ensure stable performance of the software. For example, a more e�ective use of the large

eigenvector array, a more e�ective thick restarting scheme, a better dynamic scheme for switching between

the Davidson iteration and the polynomial methods are needed. We would like also to use this eigenvalue

code in a variety of applications. Through the use of PVM and MPI data communication libraries, we

have been able to easily port the eigenvalue code onto parallel environments. In constructing this software

package, we should continue to improve the structure of the program so that it requires little or no additional

work to run the eigenvalue packages e�ciently on most parallel architectures.

The second front of research would be to extend the preconditioning techniques to other types of eigen-

value problem. For example, most preconditioning techniques can be trivially extended to Hermitian eigen-

value problems and unsymmetric eigenvalue problems. Through our study here, we see that one of the most

robust preconditioning schemes is the CG-based preconditioner. It has been noticed that by using a dynamic

tolerance on the residual of the linear system, along with a dynamic limit on the number of matrix-vector

multiplications used by CG, one could signi�cantly reduce the execution time of the overall eigenvalue solu-

tion process. The search for this dynamic tolerance scheme could be conducted through study of underlying

dynamics.

There are also many questions we have raised during the study of hybrid methods for eigenvalue problem.

They are interesting challenges as well.
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